Development of a Sinkhole Risk Evaluation Program

Boo Hyun Nam

Assistant Professor

Department of Civil, Environmental, and Construction Eng.

University of Central Florida (UCF)

Presented to: FDOT State Materials Office August 21, 2015

UCF Sinkhole Research Team

Dr. Boo Hyun Nam Geotechnical Eng.

 Sinkhole stability analysis for risk evaluation

-Subsurface characterization of geotechnical system

- Laboratory evaluation of geomaterials

Dr. Manoj Chopra Geotechnical Eng.

 Physical groundwater model test

-Soil erosion and sedimentation

 Nonlinear soil consolidation & stress analysis

Dr. Andrew H. Yun Structural Eng.

- Sinkhole sensing and prediction algorithm
- Signal processing & data mining; Civil infrastructure monitoring
- Multi-physics modeling

Dr. Dingbao Wang Water Resource Eng.

-Surface water and groundwater interaction

- Water resources systems analysis
- GIS and remote sensing applications in water resources

UCF Sinkhole Research Team (cont.)

- Four Graduate Students
 - Adam Perez (M.S. student)
 - Sinkhole stability analysis
 - Ryan Shamet (M.S. student)
 - Sinkhole identification by using CPT
 - Xia Han (Ph.D student)
 - Groundwater modeling
 - TBD
 - In-situ groundwater monitoring

Status of UCF Sinkhole Research

- The Florida Sinkhole Research Institute (FSRI)
 - Expertise in the fields of geotechnics, sensing and monitoring, and groundwater modeling
- Collaboration with FDOT District 5
 - Development of sinkhole research ideas
- Collaboration with Florida Geological Survey (FGS)
 - Sinkhole mapping project
- Terracon Foundation Support
 - To buildup testing setup for sinkhole research

Presentation Outline

- Sinkhole mechanism
- Current practice of sinkhole study in Florida
- Literature review
- Work plan
 - Task 1 Development of <u>in-situ groundwater monitoring</u> system
 - Task 2 Development of <u>high-resolution recharge map</u> (model development)
 - Task 3 Improved identification method for <u>detecting raveled soil zone</u> (by using CPT)
 - Task 4 Development of <u>sinkhole stability analysis model</u> and <u>stability chart</u>
 - Task 5 <u>Guideline</u> of sinkhole evaluation procedure

Sinkhole Mechanism (from geotech perspective)

Key Parameters for Sinkhole Study

- Recharge rate
- Head difference
- Soil profile and properties
- Thickness of overburden soil
- Raveled zone of soil
- etc.

Affect sinkhole stability

CPT data

SR 434, Deland, FL

Cone Penetration Test (CPT) Performed by District 5

Lake formed > by Sinkhole

SR 434, Deland, FL – Sinkhole Site

Pore water pressure measurement (Piezometer)

Raveling Index

Raveling Index (RI) = Thickness of raveled zone / Depth to top of raveled zone

(suggested by K. Gray)

Stability Analysis - Literature review

Stability Chart

Dome Diameter (m)

FEM Modeling

Yang and Drumm 2002_Eng. Geology 2002

Stability Analysis - Literature review

C/D

Stability Analysis - Literature review

Stability Ratio, N

$$N = \left[\frac{\sigma_{s} - \sigma_{T} + \gamma(h + D/2)}{c_{u}}\right]$$
(1)

where σ_T =internal cavity or tunnel pressure; σ_S =surface surcharge; h=soil thickness above the cavity; D=diameter of circular openings; γ =unit weight of the clay soil; and c_u =undrained shear strength.

Drumm et al. 2009_ASCE JGGE

Potential Research Topics?

- 1. Site-based stability analysis by using field (or lab) tests
- 2. Stability analysis under varied groundwater recharge conditions
- 3. Correlation between Raveling Index vs. Stability chart

Work Plan

- Task 1 In-situ groundwater monitoring system
- Task 2 High-resolution recharge map (model development)
- Task 3 Improved identification method for detecting raveled soil zone (by using CPT)
- Task 4 Development of sinkhole stability analysis model and Stability chart
- Task 5 Guideline of sinkhole evaluation procedure

Task 1 – In-situ monitoring

- Piezometer sensor at multiple locations
- Long-term monitoring of GWT
- Develop the algorithm of data processing (e.g. event-based analysis)

Task 2 – High-resolution recharge map

- Development of groundwater model (by using MODFLOW)
- Development of high-resolution recharge map for the study sites

Head difference between surficial and upper Floridan aquifer

Estimated recharge at the spatial resolution of <u>30 m by 30 m (for the grid size)</u>

Task 3 – Improve the RI Index

- RI = Thickness of raveled zone/depth to raveled zone
- The RI is empirical and solely based on tip resistance of CPT. <u>Tip</u> resistance readings less than 10 kg/cm² (10 tsf) are typical conditions of raveled zone.

Zone	Soil Behavior Type
1	Sensitive fine grained
2	Organic material
3	Clay
4	Silty Clay to clay
5	Clayey silt to silty clay
6	Sandy silt to clayey silt
7	Silty sand to sandy silt
8	Sand to silty sand
9	Sand
10	Gravelly sand to sand
11	Very stiff fine grained*
12	Sand to clayey sand*

* Overconsolidated or cemented

(Robertson et al. 1990)

Task 4 – Sinkhole Stability Analysis Model and Stability Chart

- Development of sinkhole stability analysis model
 - coupled seepage and stress analysis
- Sinkhole stability chart
 - Accounting for varied hydrogeological and soil conditions

Task 5 – Develop the guideline for sinkhole risk evaluation

- Guidelines (or manuals) regarding the details of:
 - 1) Installation and monitoring methods for in-situ GWT sensors
 - 2) Identify the raveled soil zone based on CPT or SPT
 - 3) Use of FEM-based sinkhole stability analysis

Thank you!

Questions ?

Development of Sinkhole Vulnerability Index

- Research methodology
 - Physical model test
 - Numerical simulation
 - Field subsurface exploration

- Sinkhole Vulnerability Index (SVI)
 - SVI = f (raveled zone, soil properties, overburden thickness, recharge, etc.)