Drilled Shaft Resistance Based on Diameter, Torque and Crowd (Drilling Resistance vs. Rock Strength) BDV 31 977 20

Project Manager: David Horhota, Ph.D., P.E. UF PI: Michael McVay, Ph.D. Graduate Students: Michael Rodgers, M.E., Caitlin Tibbetts, M.E., Stephen Crawford, E.I. Undergraduate Students: Matt Andrews, Shelby Brothers, Tim Copeland, Aaron Hendricks, Michael Ferguson

> FDOT Geotechnical Research in Progress Report Presented by: Michael Rodgers, M.E.

University of Florida Department of Civil & Coastal Engineering Presented August 21, 2015

1

Topics Covered

- Brief review
- Laboratory drilling equation development
 - Karasawa's equation
 - Teale's equation
- Pilot project analysis
 - Little River Quincy, Florida
 - Overland Jacksonville, Florida
- Kanapaha (Gainesville) site investigation

Review

- Developed laboratory drilling environment
 - Drill into large synthetic limestone (Gatorock) blocks measuring 5 drilling parameters in real time
 - Torque, T
 - Crowd or axial force, F
 - Penetration rate, u
 - Roational speed, N
 - Bit diameter, d
 - Drilling results are used for drilling equation development
 - Developed equation is used for field monitoring predictions to estimate drilled shaft capacity in real time
 - Estimates skin friction based on predicted rock strengths
- Acquired field drilling equipment
 - Records the same drilling parameters in the field from the drill rig in real time
 - Field monitoring results are compared to obtained core data and load test results

Laboratory Coupler System

Strain Gage Instrumentation

Laboratory Drilling

- 12 readings are taken per revolution for each gage
 - Average value at each increment of penetration
 - i.e. penetrate 0.008 in/rev
- Readings are then averaged for each gage type per depth increment
 - i.e. readings from both gages for crowd are averaged
 - Compensates for bending
 - One side in compression and one side in Tension
- Averages for every depth increment are then combined to produce a final average for
 torque and crowd for the entire drilling

Single Laboratory Drilling Result

Laboratory Drilling Breakdown

- 81 drilling data points produced in total
- 81 compressive strength data points
 - 43 used the 4.5" bit
 - 38 used the 6" bit
- 64 tensile strength data points
 - 29 used the 4.5" bit
 - 35 used the 6" bit

Effects of Bit Diameter on Torque

Effects of Bit Diameter on Force

Torque and Force vs qu

- Torque shows good trending when plotted vs respective compressive strengths
- Force trending is more variable

10

Torque vs u/N

- Torque increases with u/N increase
- Lower RPMs produce the highest torques

Force vs u/N

- Force generally increases with u/N increase
- RPMs plot randomly

Analysis Conclusions

- Torque
 - Shows less dependency on bit diameter;
 - Shows strong trend with rotational speed;
 - Shows a good trend with penetration rate;
 - Shows a strong trend with compressive strength independent of all other drilling parameters
- Crowd
 - Shows more dependency on bit diameter;
 - Shows poor trend with rotational speed;
 - Shows a trend with penetration rate;
 - Shows a trend with compressive strength independent of all other drilling parameters
- Final drilling equation
 - Place more emphasis on torque, rotational speed and penetration rate
 - Most reliable drilling parameters
 - Should place less emphasis on crowd and bit diameter
 - Upscaling may be an issue
 - Crowd was least reliable drilling parameter and more dependent on bit diameter

Karasawa's Equation

- Karasawa compared:
 - Drillability Strength of rock, D_s
 - Unconfined Compressive Strength, S_c or q_u
- Concerned that too much influence was being placed on bit diameter

Teale's Equation

• Based on principles of virtual work

• $W = Fu + 2\pi NT$

• Specific energy, e

•
$$e = \frac{F}{A} + \left(\frac{2\pi}{A}\right) \left(\frac{NT}{u}\right)$$

• Two drilling components

– Thrust

•
$$e_t = \left(\frac{F}{A}\right)$$

- Rotary

•
$$e_r = \left(\frac{2\pi}{A}\right) \left(\frac{NT}{u}\right)$$

Investigating Drilling Equations

- Compared methods proposed by Karasawa (2002) and Teale (1965)
 - Created equation plots
 - D_s (Karasawa) versus q_u
 - e (Teale) versus q_u
 - Used a 2nd order polynomial regression line for curve fitting
- Compared the equation plots based on set drilling parameters
 - Bit diameter
 - Rotational speed
 - Penetration rate

Comparing Teale and Karasawa (Based on Rotational Speed for Compressive Strength)

- Each equation
 is plotted using
 groupings
 based on RPMs
- Teale's

 equation
 shows far
 better trending

Comparing Teale and Karasawa (Based on Penetration Rate for Compressive Strength)

- Each equation is plotted using groupings based on penetration rate for each rotational speed
- Teale's equation shows far better trending

Comparison Results

- Teale's equation shows better trending
 - Bit diameter
 - Rotational speed
 - Penetration rate
- Which equation places less emphasis on the problematic drilling parameters?
 - Bit size
 - Teale's equation only uses bit diameter to define the area of the excavation
 - Karasawa's equation places additional emphasis on bit diameter d³
 - Force
 - On average, Teale's thrust component only accounts for 0.2% of the reported specific energy values, e, in lab drilling results
- Preliminary monitoring results indicated Karasawa's equation produced large overestimations
- Teale's equation was selected for field monitoring analysis

Field Drilling Equation

Using the equation from the e vs. qu plot

```
y = 0.0066x^2 + 13.681
```

Where,

Setting the equation equal to zero:

 $0.0066x^2 - 13.681x - y = 0$

Using the Quadratic solution,

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Substituting terms in for a, b, and c:

$$q_u = \frac{13.681 + \sqrt{(-13.681)^2 - 4*(0.0066)*(-e)}}{2*(0.0066)}$$

Pilot Projects

- 2 field monitoring locations
- Little River bridge site
 - Quincy, Florida
 - 1 load test
 - O-cell testing
- Overland bridge site
 - Jacksonville, Florida
 - 3 load tests:
 - Statnamic testing
- Provided direct feedback on monitored drilling results compared to conventional test methods

Little River – Quincy, Florida

- IMT AF 250 drill rig was used for shaft installation
- Only one sensor had to be installed for monitoring
 - Crowd
- 48 inch diameter shaft installed
- O-cell load test
- Strata was highly variable
 - 3 distinct soil layers
 - High strength rock present
- 33 foot section of the shaft was available for comparison
 - Geomaterial comparable to limestone
 - Rock Auger was used to complete the drilling
 - O-cell results indicated the section was at or close to failure

Little River - Frequency Distribution of Estimated q_u

- Frequency distribution of qu is lognormal
- LN(qu) Frequency distribution produces a normal distribution (symmetric)
 - Confirms raw data lognormal distribution

Methods of Analysis

- FDOT Method
 - The mean and standard deviation are found for the entire investigated portion of the shaft (i.e. Elevations +45.6' to +12.6')
 - Values that fall outside of 1 σ from the mean are eliminated and a new mean is found with the remaining values
- FDOT* Method
 - Initial averaging is done for each section between strain gages (i.e. zone)
- Limiting Method
 - Limits values based on adhesion constraints
 - qu = 120 tsf, qt = 20 tsf, fs = 25 tsf
 - Values are not eliminated, they're limited to constraining values
- LN Transform Method
 - The log space mean and standard deviation are found using the arithmetic mean and standard deviation from raw data set (El. +45.6 'to +12.6')
 - The data set is then converted to log space using the natural logarithm
 - Values that fall outside of 1σ from the mean in log space are eliminated.
 - The remaining values are then converted back to normal space and a new mean is found.

Methods of Analysis

- Raw data shows a wider spread of compressive strengths
- 4 methods reduce the spread of the data closer to the geometric mean
 - FDOT method
 - FDOT* method
 - Limiting method
 - LN Transform method

Little River Bridge Site

- Little River had a large degree of variability
- qu stratification indicated 3 distinct layers
 - 2 layers contained limestone formations
 - Zones 2 and 3
- Would qu values obtained from monitoring indicate the same stratification?

Little River – Shaft Investigation

• Soil Zone 2

- qu stratification indicates the highest compressive strengths
- Soil Zone 3
 - qu stratification indicates lower compressive strengths
- SG Zones 7 through 4
 - Mobilized or close to mobilization
- SG Zones 2 and 3
 - Further away from mobilization

qu Stratification

- Monitoring results indicated the same qu stratification as the core data
 - More high end qu values indicated in Zone 2
 - Less than 10% of the zone 2 values were 280 psi or less
 - Half of the zone 3 values were 280 psi or less
- Majority of values fell within the compressive strength range used for lab drilling
 - 140 psi to 1667 psi
 - 20 ksf to 240 ksf

qu Frequency Distribution (El. +26.6' - +19.6')

Estimating Shaft Capacity

- FDOT recommended method for drilled shafts socketed into limestone
 - Soils and Foundation
 Handbook 2015
- Incorporates split tensile strength in capacity estimates
 - Allows adjustments to be made based on limestone formation
 - qt/qu ratio

qt Assessment

- qt-qu pairs were created for Little River from available core data
- qu and qt values that fall within 1 vertical foot of one another are paired together
 - Same core run
- The mean and standard deviation of the data set are found
- qt/qu ratios that fall outside of 1 standard deviation from the mean are eliminated
 - Remaining qt-qu pairs are plotted
- This was done to determine the qt/qu slope for each soil zone
 - General qt/qu range thought to be 0.1 to 0.3

Are the qt Adjustments Valid?

- Creates qt-qu pairs using dissimilar geomaterials
- Developed pairing criteria
 - Similar dry unit weights
 - Similar rock mass constituents
 - Similar moisture contents
 - Similar void structure
 - Porosity and void ratio
 - Satisfies Gw = Se condition
 - Assume degree of saturation, S = 1
- Produced very few pairs
 - Less than 5 pairs per segment were available at Overland
 - 4 additional cores were taken within 10 feet of the shaft
- Does not provide real time assessment of tensile strength or skin friction
- Turned to literature for alternative methods – Johnston Criterion

Boring/ Shaft-Core	Sample No.	Test Type	Moisture (%)	Dry Density (pcf)	Max Load (Ibs)	S.T. Strength (psi)	q(u) (psi)	Displ. @ Fail. (in)	Strain @ Fail. (%)
(38)									
2/1-1	1	Т	15.6	106.5	79.3	13.9		0.0344	
(48)									
2/1-2	1	Т	59.8	63.3	39.6	6.5		0.0863	
	2	U	58.2	64.7	128.6		38.1	0.1904	3.67
	3	Т	60.1	63.2	66.0	8.1		0.0655	
	4	U	69.0	59.7	61.1		16.9	0.1679	3.34
	5	Т	3.2	156.0	9,520.2	975.2		0.0682	
	6	Т	3.8	135.0	3,180.6	327.3		0.0489	
	7	U	5.1	134.4	5,319.1		1,116.9	0.0553	1.08
	8	Т	7.6	131.5	2,077.8	218.1		0.0335	
	9	Т	4.8	149.9	1,031.9	107.3		0.0228	
	10	Т	61.3	63.2	39.3	4.0		0.0624	
	11	Т	28.8	91.6	54.5	5.2		0.1934	

Johnston Criterion

- States qt/qu = B/M for drained conditions
- As compressive strength approaches zero B = 1
 - B = 1 indicates a normally consolidated clay
- M represents the relationship between φ' and qu
 - As compressive strength increases, M increases
- Johnston developed B and M from 100 data sets including results from lightly OC clay to very hard rock
 - 1700 individual tests
 - Each data set included
 - At least 3 triaxial tests
 - Split tension testing
 - Direct tension testing
- Used least squares analysis to derive curve equations
 - Developed 1 general equation
 - Developed 5 specific material equations
 - 1 for carbonate materials (limestone)

Johnston Criteria

- Provides a qt/qu range of 0.09 to 0.29 for material strengths 10 to 10,000 psi
 - In agreement with FDOT and UF estimated range
- Used Johnston equation for limestone and predicted qt values using qu data at Little River
- Predicted qt values are then designated the same dry unit weight and moisture content as the qu value from which they came
- These predicted qt values are plotted as qt versus dry unit weight and moisture content, separately
 - Do the predicted values follow the same trend as the measured values?
- Same procedure was completed using core data from all of Florida

Florida Core Data Sites

- 17th Street Causeway
- Acosta Bridge Research (Modulus)
- BR720153 SR-9 (I-95) Overland
- CR-326 @ Waccasa River
- HEFT / SR 874 PD&E
- I-295 Buckman Bridge
- I-295 Dames Point Bridge
- I-95 @ I-295 Cloverleaf
- I-95 Fuller Warren Bridge
- Jewfish Creek
- MIC- People Mover Project
- NW 12th Ave (SR 933) Miami River Bridge
- NW 36th Street Bridge
- Pump Station at Bal Harbour (96th St & Indian Creek)
- Radio Tower Everglades Academy (Florida City)
- SR-10 @ CSX RR (Beaver St. Viaduct), Duval Co.
- SR-20 @ Lochloosa Creek, Alachua Co.
- SR-25 @ Santa Fe River
- SR30/US98 @ Aucilla River (District 3)
- SR-9 (I-95) Overland Bridge
- US-90 Victory Bridge (District 3)
- Verona Ave Bridge Over Grand Canal
- Wall At Service Road South of Snake Creek

Predicted Split Tensile Values

Little River, Quincy Florida

All of Florida

Little River Analysis – Raw Data

	Arithmetic Mean (Raw Data)											
Shaft Section (Strain Gage Levels)	Elevation Range (ft)		Measured Mean (O-cell) (ksf)	Predicted Mean (Monitoring) (ksf)	Percent Difference	Predicted Median (Monitoring) (ksf)	Predicted Minimum (Monitoring) (ksf)	Predicted Standard Deviation (Monitoring)	Predicted CV (Monitoring)	Count		
SG7 to SG6	45.60	40.60	21.1	19.67	-6.79%	9.77	2.42	25.88	1.32	73		
SG6 to O-cell	40.60	35.1	20.6	22.09	7.21%	17.38	2.28	17.10	0.77	79		
O-cell to SG5	35.10	31.6	21.4	19.46	-9.08%	12.32	3.56	24.33	1.25	52		
SG5 to SG4	31.60	26.6	13.6	13.95	2.60%	9.85	4.06	11.11	0.80	67		
SG4 to SG3	26.60	19.6	9.7	13.77	41.95%	8.90	3.04	13.46	0.98	95		
SG3 to SG2	19.60	12.6	9.9	13.89	40.28%	8.34	1.27	27.47	1.98	104		
Average - SG7 to SG4			19.04	18.83	-1.11%	Note: The highlighted sections are zones where T-Z curve a						
Total Load (kips) - SG7 to SG4		4545	4495	-1.11%	strain gage load distribution data indicate full side shear mobilization has not been achieved. Zones that are not highlighted indicate side shear has been mobilized or is approaching mobilization.							
Average - SG7 to SG2			15.12	16.71						10.50%		
Total Load (kips) - SG7 to SG2			6269	6928						10.50%		

- Top 4 zones have reached or are close to full side shear mobilization
 - Indicated by T-Z curves and Strain gage load distribution
- Highlighted zones are further away from side shear mobilization
- 1% difference between the O-cell and predicted monitoring results
- Monitoring provides a slight underestimation which is desired

Little River Analysis – Limiting Method

	Limiting Ultimate Values											
Shaft Section (Strain Gage Levels)	Elevation Range (ft)		Measured Mean (O-cell) (ksf)	Predicted Mean (Monitoring) (ksf)	Percent Difference	Predicted Median (Monitoring) (ksf)	Predicted Minimum (Monitoring) (ksf)	Predicted Standard Deviation (Monitoring)	Predicted CV (Monitoring)	Count		
SG7 to SG6	45.60	40.60	21.1	16.10	-23.72%	9.77	2.42	13.71	0.85	73		
SG6 to O-cell	40.60	35.1	20.6	20.47	-0.63%	17.38	2.28	12.58	0.61	79		
O-cell to SG5	35.10	31.6	21.4	16.84	-21.31%	12.32	3.56	12.66	0.75	52		
SG5 to SG4	31.60	26.6	13.4	13.65	1.88%	9.85	4.06	9.95	0.73	67		
SG4 to SG3	26.60	19.6	9.7	13.09	34.99%	8.90	3.04	10.49	0.80	95		
SG3 to SG2	19.60	12.6	9.9	11.46	15.75%	8.34	1.27	9.49	0.83	104		
Average - SG7 to SG4			18.98	16.86	-11.21%	⁶ Note: The highlighted sections are zones where T-Z curve						
Total Load (kips) - SG7 to SG4			4533	4025	-11.21%	strain gage load distribution data indicate full side shear mobilization has not been achieved. Zones that are not highlighted indicate side shear has been mobilized or is approaching mobilization.						
Average - SG7 to SG2			15.09	14.91	-1.16%							
Total Load (kips) - SG7 to SG2			6257	6184	-1.16%							

- Provides a good conservative estimate
- 1% difference over the entire 33' span of the shaft
 Includes zones that are not fully mobilized

Little River Analysis – FDOT* Method

	FDOT* Method (Each Section)											
Shaft Section (Strain Gage Levels)	Elevation Range (ft)		Measured Mean (O-cell) (ksf)	Predicted Mean (Monitoring) (ksf)	Percent Difference	Predicted Median (Monitoring) (ksf)	Predicted Minimum (Monitoring) (ksf)	Predicted Standard Deviation (Monitoring)	Predicted CV (Monitoring)	Count		
SG7 to SG6	45.6	40.6	21.1	12.25	-41.93%	8.85	2.42	8.61	0.70	65		
SG6 to O-cell	40.6	35.1	20.6	17.66	-14.26%	16.12	6.57	8.06	0.46	65		
O-cell to SG5	35.1	31.6	21.4	15.00	-29.92%	12.04	3.56	10.48	0.70	49		
SG5 to SG4	31.6	26.6	13.4	10.28	-23.29%	8.16	4.06	5.25	0.51	57		
SG4 to SG3	26.6	19.6	9.7	10.34	6.62%	8.12	3.04	5.89	0.57	86		
SG3 to SG2	19.6	12.6	9.9	10.01	1.10%	8.17	1.27	6.18	0.62	100		
Average - SG7 to SG4			18.98	13.80	-27.28%	$_6$ Note: The highlighted sections are zones where T-Z curve :						
Total Load (kips) - SG7 to SG4			4533	3296	-27.28%	strain gage load distribution data indicate full side shear						
Average - SG7 to SG2			15.09	12.26	-18.71%	highlighted indicate side shear has been mobilized or is approaching mobilization.						
Total Load (kips) - SG7 to SG2			6257	5086	<mark>-1</mark> 8.71%							

- Provides a more conservative estimate
 - Streamlined result
- FDOT and LN Transform methods produced the largest underestimates
 - Eliminated from future analysis

Overland – Jacksonville, Florida

- Bauer BG30 drill rig was used for shaft installation
- No sensors had to be installed for monitoring
 - Copied signal from built in sensors
- 60 inch diameter shafts installed
- 3 Statnamic load tests
- Strata was less variable
 - 2 distinct soil layers
 - Very low strength rock present
- Only 2 strain gage segments available for comparison
 - Geomaterial comparable to limestone
 - Rock Auger was used to complete the drilling
 - Statnamic results indicated the section was at or close to failure

Overland Field Monitoring of qu

- Segment 1
 - Average qu = 58.1 psi
 - Segment was fully mobilized
- Segment 2
 - Average qu = 185.6 psi
 - Segment was not fully mobilized

Overland Analysis

Segment	Status	Statnamic Ra		Data	FDC	DT*	Limiting	
	Status	fs (ksf)	fs (ksf)	% Diff	fs (ksf)	% Diff	fs (ksf)	% Diff
2	Fully Mobilized	2.06	1.90	-7.73	1.88	-8.56	1.90	-7.73
3	Approaching Mobilization	4.68	5.30	13.34	3.72	-20.53	5.30	13.34

- Segment 2 is the only portion of all 4 shafts, including Little River, where full side shear mobilization was confirmed by T-Z curves
- Results show a 7.7% difference between measured and predicted skin friction for segment 2
 - 0.16 ksf difference
- Very low strength material
 - Very little core data was able to be recovered at these depths
 - 4 borings within 10 feet of the shaft only produced 4 qt samples and 2 qu samples for segment 2

Pilot Project Results

- Indicated qu stratification at both locations
- Accurately estimated skin friction in both locations where T-Z curves indicated full side shear mobilization had been achieved or was closely approaching
- Little River was highly variable throughout with very high rock strengths present
- Overland was less variable with very low rock strength present
- Monitoring was successful even with changing conditions
 - 2 different rig types
 - 2 different drilling crews
 - 2 different bit diameters
- Produced promising results heading into the final load test at Kanapaha in Gainesville, Florida
 - Highly weathered limestone
 - Poor recoveries
 - Highly variable soil/rock conditions

Kanapaha – Final Load Test

- FDOT Kanapaha site will be used for the final load test
- Static load test
 - 3 foot diameter shafts
 - 45 55 feet of embedment depth
 - Test and reaction shafts will be instrumented
- Large amount of site investigation completed
 - 42 CPT's
 - 7 SPT's
 - 5 core borings
 - 5 auger borings
 - 12 seismic lines
- Very little intact rock has been recovered
 - Excellent location to show the value of monitoring efforts

Kanapaha Site Investigation Locations

Kanapaha Limestone

Typical Limestone Recovered

Recovered 08/12/2015

Future Plans

- Determine ideal location at Kanapaha for final load test
- Design test and reaction shafts based on core findings
- Perform static load test
 - Make monitoring predictions for skin friction
- Analyze load test results
- Compare the results
- Draft final report

Questions?