EDC Phase II - LRFD Resistance Factors FDOT BDV31 977-13

Principal Investigator Michael McVay, PhD

<u>Co-Principal Investigator</u> Scott Wasman, PhD <u>Project Managers</u> Rodrigo Herrera, PE Juan Castellanos, PE

<u>Subcontractors</u> Khiem Tran, PhD (Clarkson University) Applied Foundation Testing (AFT)

Scope of Work

- Task 1 Test piles (5) at Choctawhatchee Bay bridge
 - EDC install
 - EDC monitoring during install
 - EDC measurements during static load tests
- Task 2 Analysis and comparisons
 - UF method (SP Review) analysis for total, skin and tip
 - Tran et al (2012) methods for analysis of skin and tip
 - Analyze EOID and BOR blows for all 5 piles
 - Compare measured load test to EDC predictions (i.e., UF method and Tran et al methods)
- Task 3 Develop LRFD resistance factors
 - Augment dataset from Phase I (FDOT BDK-75-977-24)
 - Determine method bias and resistance factors

FLORIDA

Choctawhatchee Bay Bridge Test Piles

- Pier 13 test pile
 - 30 in square
 - Gauges 2B from top and bottom
 - 160 ft long
- Piers 25, 33, 59 & 84
 - 30 in square with void
 - Gauges in solid and voided sections
 - 160 ft long

			Тор				
US 331/ y Bridge tion ection	5 ft				7	15 ft	
on •	30 ft	×		×)	134 ft	
					- 	{	160 ft
	5 ft $2.5 ft$		⊠ ⊠ Tip		、	11 ft	/

Voided test pile for Choctawhatchee Ba

 \times

EDC-Solid Sec

EDC-Voided S

Voided Cross Section

30 in

Choctawhatchee Bay – EDC New method

Choctawhatchee Bay – Pier 13

	Fixed Method	UF Method			New Method (Tran et al.)		CAPWAP			Load Test	
Pile Gauge Locations	Total Capacity (Kips)	Total Capacity (Kips)	Skin Capacity (Kips)	Tip Capacity (Kips)	Total Capacity (Kips)	Skin Capacity (Kips)	Tip Capacity (Kips)	Total Capacity (Kips)	Skin Capacity (Kips)	Tip Capacity (Kips)	Total Capacity (Kips)
Top and Tip Gauges	593	548	414	134	625	425	200	699.6	434.7	264.9	1500

- Pile was driven, cut off, and load tested
- 3 days between EOID and BOR
- 38 days between BOR and load test
- EDC not accessible for load test and restrikes
- Measured/Predicted not useful

Choctawhatchee Bay – Pier 25 Load Test

Choctawhatchee Bay – Pier 33 Load Test

FLORIDA

Choctawhatchee Bay – Pier 59 Load Test

FLORIDA

Infrastructure & Environmen

Choctawhatchee Bay – Pier 84 Load Test

Choctawhatchee Bay – Time Between EOID, BOR, and Load Test

Pier – Test Pile							
25	33	59	84				
EOD 1	EOID	EOID	EOD 1				
(3/12/14)	(3/26/14)	(4/22/14)	(5/7/14)				
Tip El115 ft	Tip El130 ft	Tip El106 ft	Tip El86 ft				
	BOR	BOR	EOD 2				
	(4/1/14)	(4/22/14)	(5/9/14)				
(3/20/14)			Tip EI96 ft				
EOD 2			EOD 3				
(3/26/14)			(5/13/14)				
Tip El125 ft			Tip El105 ft				
			EOD 4 and				
BOR 3			BOR				
(4/1/14)			(5/15/14)				
			Tip El115 ft				
Load Test	Load Test	Load Test	Load Test				
(4/22/14)	(5/3/14)	(5/9/14)	(5/19/14)				
Note: For the test pile at pier 25, EDC gages were not monitored							

Note: For the test pile at pier 25, EDC gages were not monitored during restrike on 3/24/14.

Bayou Lacassine Bridge, Louisiana

2 Test piles (Haque et al., 2014)

FLORIDA

■ 30 in² – 75 ft long with 16.5 in diameter void, 70 ft long

Measured & Predicted – UF Method

		Measured			Predicted		
					SmartPile	SmartPile	SmartPile
16 piles		Davisson	Тір	Skin	Total	Tip	Skin
	Site & Pile	Capacity	Capacity	Capacity	Capacity	Capacity	Capacity
		(Kip)	(Kip)	(Kip)	(Kip)	(Kip)	(Kip)
US 331 solid							
soction	Dixie Highway End Bent 1	430	296	134	448	349	99
Section	Dixie Highway Pier 8	380	200	180	470	250	220
42 values	Caminada Bay Bent 1 LADOT	540	144.8	395.2	574	94	480
	Caminada Bay Bent 7 LADOT	625	80	545	587	67	520
US 331 solid	Bayou Lacassine Bent 1 Pile 1 LADOT	452	71	381	432	91	341
& voided	Bayou Lacassine Bent 1 Pile 3LADOT	850	153	697	745	74	671
contion	I-95 Jax	380	200	180	369	263	106
Section	Dixie Highway Pier 4			212			171
	5th St Bascule Pier 2 Pile 37			185			220
	5th St Bascule Pier 2 Pile 53			180			200
	5th St Bascule Pier 3 Pile 9			68			150
r -	5th St Bascule Pier 3 Pile 42			153			215
Solid	US 331 Choctawhatchee Bay Pier 25	1500	280	1220	1726	255	1471
Solid	US 331 Choctawhatchee Bay Pier 33	1500			1466	158	1308
Section	US 331 Choctawhatchee Bay Pier 59	1080	180	900	1343	251	1092
L	US 331 Choctawhatchee Bay Pier 84	1500			1731	866	865
ſ	US 331 Choctawhatchee Bay Pier 25	1500	280	1220	1151	155	996
Voided	US 331 Choctawhatchee Bay Pier 33	1500			1122	96	1026
Section	US 331 Choctawhatchee Bay Pier 59	1080	180	9 00	1224	206	1018
	US 331 Choctawhatchee Bay Pier 84	1500			1424	793	631
El ORDER de La Commant							12

Measured vs Predicted – UF Method

Measured & Predicted – Tran et al Method

15 piles
33 values

- US 331 solid section
- 39 values
 - US 331 solid & voided section

School of Sustainable

Infrastructure & Environmen

FLORIDA

Ju		Measured			Predicted (Tran et al)			
					New	New	New	
					Method	Method	Method	
		Davisson	Тір	Skin	Total	Tip	Skin	
	Site & Pile	Capacity	Capacity	Capacity	Capacity	Capacity	Capacity	
31 solid		(Kip)	(Kip)	(Kip)	(Kip)	(Kip)	(Kip)	
on	Dixie Highway End Bent 1	430	296	134	380	225	155	
	Dixie Highway Pier 8	380	200	180	358	174	184	
, 	Caminada Bay Bent 1 LADOT	540	144.8	395.2	585	180	405	
31 solid	Caminada Bay Bent 7 LADOT	625	80	545	540	90	450	
hed	Bayou Lacassine Bent 1 Pile 1 LADOT	460	71	381	558	53	505	
	Bayou Lacassine Bent 1 Pile 3LADOT	845	153	697	846	87	759	
DN	I-95 Jax	380	200	180	480	280	200	
	Dixie Highway Pier 4			212			180	
	5th St Bascule Pier 2 Pile 37			185			158	
	5th St Bascule Pier 2 Pile 53			180			194	
	5th St Bascule Pier 3 Pile 9			68			216	
	5th St Bascule Pier 3 Pile 42			153				
Solid	US 331 Choctawhatchee Bay Pier 25	1500	280	1220	1450	200	1250	
	US 331 Choctawhatchee Bay Pier 33	1500			1320	330	1080	
Section	US 331 Choctawhatchee Bay Pier 59	1080	180	900	1320	280	1040	
l	US 331 Choctawhatchee Bay Pier 84	1500			1350	700	900	
	US 331 Choctawhatchee Bay Pier 25	1500	280	1220	1370	200	1170	
Voided _	US 331 Choctawhatchee Bay Pier 33	1500			1260	330	990	
Section	US 331 Choctawhatchee Bay Pier 59	1080	180	900	1200	280	920	
	US 331 Choctawhatchee Bay Pier 84	1500			1280	700	14 860	

Measured vs Predicted – Tran et al Method

Data Quality

Better Data

- Pile tested to failure
- Pile EDC observed during load test (i.e., measured skin and tip capacity)
- Pile compression tests
- Good Data
- Pile not loaded to failure
- Predictions used based on pile movement (pile not loaded to failure)
- Estimated measured skin and tip pile capacity (i.e., application of DeBeer's method)
- Pile tension tests

Resistance Bias, λ_R Better and Good Data

- Bayesian updating of summary statistics
- Technique to account for "quality" of data subsets
- Applied in pile capacity predictions (Kwak et al, 2010; Yu, 2006; Zhang and Tang, 2002)
- Updated summary statistics, μ_U and σ_U^2 (Ang and Tang, 1975)

$\mu_B \sigma_G^2 + \mu_G \sigma_B^2$	$\sigma^2 - \frac{\sigma_G^2 \cdot \sigma_B^2}{\sigma_G^2 \cdot \sigma_B^2}$
$\mu_{\rm U} = \frac{\sigma_{\rm G}^2 + \sigma_{\rm B}^2}{\sigma_{\rm G}^2 + \sigma_{\rm B}^2}$	$\sigma_0 = \frac{1}{\sigma_G^2 + \sigma_B^2}$

Method	Better	Good	Updated
UF	$\mu_{\rm B} = 1.06$ $\sigma_{\rm B} = 0.318$ ${\rm CV}_{\rm B} = 0.298$ ${\rm N} = 25$	$\mu_{G} = 0.981$ $\sigma_{G} = 0.304$ $CV_{G} = 0.310$ N = 17	$\begin{array}{l} \mu_U = 0.998 \\ \sigma_U = 0.212 \\ CV_U = 0.212 \\ N = 42 \end{array}$
Tran et al (2012)	$\mu_{\rm B}$ = 1.01 $\sigma_{\rm B}$ = 0.229 ${\rm CV}_{\rm B}$ = 0.226 N = 25	$\mu_{G} = 1.0$ $\sigma_{G} = 0.268$ $CV_{G} = 0.266$ N = 14	$\mu_U = 0.991$ $\sigma_U = 0.169$ $CV_U = 0.17$ N = 39

Resistance Factors

• LRFD Φ for AASHTO (2014) parameters: $q_D/q_L = 2$, dead load factor $\gamma_D=1.25$, live load factor $\gamma_L=1.75$, dead load bias $\lambda_D=1.08$, live load bias $\lambda_L=1.15$, $CV_D=0.128$, $CV_L=0.18$, $\beta = 2.33$ (single pile in a group)

Calibration Method	Prediction Method						
	UF	Tran et al	PDA/CAPWAP				
FOSM	0.64 (β=2.33)	0.68 (β=2.33)	(0.65 β=2.5, FDOT)				
FORM	0.71- 0.74	0.79- 0.81	Not computed yet				

FOSM: First Order Second Moment; FORM: First Order Reliability Method

- Calculated resistance factors for single tested piles
- Based on monitored solid (14) and solid top/tip with void piles (6)
- Not based on cylinder piles
- Due to the limited database, results from the first two columns should be considered preliminary

References

- AASHTO (2014). AASHTO LRFD Bridge Design Specifications (US Customary Units), Fourth Edition, AASHTO, Washington, D.C.
- Tran, K.T, McVay, M., Herrera, R., and Lai, P. (2012). "Estimating static tip resistance of driven piles with bottom pile instrumentation", *Canadian Geotechnical Journal*, 49, 381-393.
- Tran, K.T, McVay, M., Herrera, R., and Lai, P. (2012). "Estimation of nonlinear static skin friction of multiple pile segments using the measured hammer impact response at the top and bottom of the pile", *Computers and Geotechnics*, 41, 79-89.
- Haque, M.N., Abu-Farsakh, M.Y., Chen, Q., and Zhang, Z. (2014). "A case study on instrumenting and testing full-scale test piles for evaluating set-up phenomenon", 2014 Transportation Research Board Annual Meeting, Washington, D.C.
- Kwak, K., Kim, K.J., Huh, J., Lee, J.H., and Park, J.H. (2010). "Reliability-based calibration of resistance factors for static bearing capacity of driven steel pipe piles", *Canadian Geotechnical Journal*, 47, 528-538.
- Yu, Y. (2006). "Bayesian updating for improving the accuracy and precision of pile capacity predictions", *IAEG2006*, Geotechnical Society of London.
- Ang, A. and Tang, W.H. (1975). Probability concepts in engineering, planning, and design, Vol. I: Basic Principles, John Wiley & Sons, New York.
- Zhang, L. and Tang, W.H. (2002). "Use of load tests for reducing pile length", An International Perspective on Theory, Design, Construction, and Performance, Geotechnical Special Publication, 116, 993-1005.

Thank You!

Questions?