Florida Institute of Technology

Dept. of Civil Engineering

Development and Testing of the Miniaturized Pavement Pressuremeter

By

Paul J. Cosentino, Thaddeus J Misilo, Alaa Shaban, Alexandra Boggs

Background

- Pressuremeters have been improved by instrumentation
- Small strains can be measured to help pavement engineers
- Equipment costs are very reasonable
- A simple test PMT stress-strain should be developed

💽 Flo

2

Florida Institute of Technology

Digital vs Manual Engineering Properties

Soil Type	Engineering	Manual	Digital	Δ	Error				
	Parameters	(kPa)	(kPa)	(kPa)	(%)				
Medium Dense Sand	E _o	14,617	14,972	355	-2%				
	$\mathbf{E}_{\mathbf{r}}$	132,286	186,553	54267	-29%				
	$P_{\rm L}$	1,436	1,433	-3	0.2%				
Loose Silty Sand	E _o	5,230	6,256	1026	-16%				
	$\mathbf{E}_{\mathbf{r}}$	34,216	37,002	2786	-8%				
	P_{L}	432	433	1	-0.2%				
Soft Clay	E _o	1,876	2,338	462	-20%				
	$\mathbf{E}_{\mathbf{r}}$	5,161	5,321	160	-3%				
	P_{L}	140	142	2	-1.4%				

Problem Statement

- Let's Supplement the Nuclear Density Testing with a Small
 Pressuremeter
 - Nuclear Equipment causes a lot of paperwork
 - Only produces Density and Moisture not Strength and Stiffness
- A small pressuremeter probe is being developed and a test can be run in the same hole as the nuclear density test
 - A fast stress-strain response is being produced
 - The data would help engineers understand in situ pavement performance

Typical Nuclear Density Equipment

Objective

The objective is to develop a miniaturized PMT field test that can be completed in about 5 minutes to measure in situ stress-strain pavement material responses

5

Methodology

A Literature Search

Identify and Develop Field Testing Site(s)

Local to FIT

Rase & Subgrade Soils

Miniaturize the Pressuremeter Probe

♠ 5/8" diameter by 6" long

Reprobe Insertion

Driven Solid versus Open Rod/Template System

Conduct Field Comparison Testing

Finalize MiniPMT Testing Procedure

Analyze Results--DRAFT Final Report & Technology Transfer

Complete Final Report

Preliminary Results

PENCEL Pressuremeter Probe Size Decreased
 First Length Decreased from 9.5 to 6 inches
 Then Diameter Decreased to 5/8th inch for 6 inch length
 Mini PMT Probe Results Compared to PENCEL Probe Results
 Mini PMT Results Compared to Dynamic Cone Penetrometer Results

PENCEL and Mini PMT's

8

Comparison PENCEL 9.5 " vs. 6" Mini

Station

Preliminary Results

6 " Mini PMT vs DCP CBR's

11

Proposed Schedule

PROJECT SCHEDULE

Development and Testing of the Miniaturized Pavement Pressuremeter

Project Title Research Agency Principal Investigator

Florida Institute of Technology Paul J. Cosentino, Ph.D. P.E.

RESEARCH	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
TASK																								
Task 1 Literature Search																								
Task 2 Develop Field Test Site																								
Task 3 Miniaturization of PMT Probe																								
Task 4 Probe Insertion Study																								
Task 5 Conduct Field Comparison Testing																								
Task 6 Finalized Min-PMT Testing Procedure																								
Task 7 DRAFT Final Report and Technology Transfer																								
Task 8 Final Report																								
																								_

