

Field Device to Measure Viscosity, Density, and Other Slurry Properties in Drilled Shafts

GRIP 2015 Gray Mullins, Ph.D., P.E.. UNIVERSITY OF SOUTH FLORIDA.

Civil & Environmental Engineering

Problem Statement

- Drilled excavation requires slurry that falls within a set of parameters regarding density, viscosity, pH and sand content; typically, each slurry property is tested using a unique, separate test method.
- Slurry properties are measured every 2 hours for the first 8 hours and 4 hours thereafter.
- A downhole device to measure all properties real time may improve data quality and expedite construction.

Research Approach

- Task 1 Literature Review
- Task 2 Component Development
- Task 3 Laboratory Trials
- Task 4 Field Testing
- Task 5 Draft Final and Final Report

Research Approach

- Task 1 Literature Review Current Practices
- Task 2 Component Development
- Task 3 Laboratory Trials
- Task 4 Field Testing
- Task 5 Draft Final and Final Report

FDOT Standard Specifications for Road and Bridge Construction Section 455-15.8

Mineral slurries	Item to be measured	Range of Results at 68°F	Test Method
	Density	64 to 73 lb/ft ³ (in fresh water environment) 66 to 75 lb/ft ³ (in salt water environment)	Mud density balance: FM 8-RP13B-1
	Viscosity	30 to 50 seconds	Marsh Cone Method: FM 8-RP13B-2
	рН	8 to 11	Electric pH meter or pH indicator paper strips: FM 8-RP13B-4
	Sand Content	4% or less	FM 8-RP13B-3

	Mixed Polymer Slurry Properties				
Polymer slurries	Item to be measured	Range of Results at 68°F	Test Method		
	Density	62 to 64 lb/ft ³			
		(fresh water)	Mud density balance:		
		64 to 66 lb/ft ³	FM 8-RP13B-1		
		(salt water)			
	Viscosity	Range Published By The Manufacturer	Marsh Cone Method:		
		for Materials Excavated	FM 8-RP13B-2		
	рН	Range Published By The Manufacturer	Electric pH meter or pH		
			indicator paper strips:		
		for Materials Excavated	FM 8-RP13B-4		
	Sand Content	0.5% or less	FM 8-RP13B-3		

Density

Standard mud balance

Viscosity Viscometer Measurements

Newtonian fluids -Viscosity

Shear-thinning fluids -Apparent viscosity -Gel strength -Yield point

View from above

Viscosity Marsh Funnel Measurements

- Time required for 1qt of fluid to flow from the orifice of a standardized funnel.
- Reported units is seconds

Sand Content

Sand content is obtained by filling the measuring cylinder with drilling mud and then washing out the slurry through a #200 sieve screen, leaving behind the sediments.

NOTE: Volumetric Sand Content

Research Approach

- Task 1 Literature Review Concepts
- Task 2 Component Development
- Task 3 Laboratory Trials
- Task 4 Field Testing
- Task 5 Draft Final and Final Report

Torque v. Rotation Rate

Examples Bob & Cup Cone & Disc Parallel Plates

Pressure v. Flow Rate

Examples Marsh Funnel Efflux Cup Capillary Viscometer Float Viscometer Variable Area Viscometer

Force v. Velocity

Examples Falling Ball Falling Piston Rolling Ball

Vibration v. Damping

Examples Vibrating Reed Oscillating Piston Oscillating Disc

Pressure vs. Flow Rate (GRIP 2014)

Research Approach

- Task 1 Literature Review OTS Components
- Task 2 Component Development
- Task 3 Laboratory Trials
- Task 4 Field Testing
- Task 5 Draft Final and Final Report

OTS Components

www.omega.com

www.omega.com

Pressure Transducer

•Pressure transducers report pressure by converting strain from a strain gauge into pressure.

•Can be used for P v. Q viscosity as well determining density from hydrostatic pressure

Submersible pH electrode

OTS Components

www.coleparmer.com

Ultrasonic Flow Meter

•Ultrasonic flow meters work by relating the change in frequency of a reflected sound wave to the rate of flow.

•Designed for water containing particulate matter.

www.omega.com

Variable area flow meter

•Measures force exerted on spring as fluid flow around a piston or disc.

•Measured force is a function of flow rate and viscosity.

OTS Components

www.omega.com

Electromagnetic Flow Meter

•An electromagnetic flow meter measures the voltage generated by the flow of a conductive fluid through a magnetic field.

•This type of flow meter may be used to gain insight on sand content due to the reduction of electrical conductivity of a slurry specimen with sand.

www.hw-well.com/Portable%20Sandmaster.htm

Sand Concentration Measurement Device

•Current sand concentration testing devices use flow rate, a laser and particle counting software to compute sand concentration.

Current Slurry Testing Equipment

Mud balance with case

•Used to determine density

Marsh funnel and cup

•Used to determine viscosity

Research Approach

Task 1 Literature Review

- Task 2 Component Development
- Task 3 Laboratory Trials
- Task 4 Field Testing
- Task 5 Draft Final and Final Report

Slurry Column Tests

Summunmanan

Slurry Column Tests

- Bentonite slurry viscosity
 - ranged from 26 (water) to 90 sec/qt
- Flow rates (12ft falling head)
 - 0 to 2gpm
- Density
 - 64 to 71 pcf
- Sand contents
 - 0.25 to 10% by volume

Pressure (psi)

40 Second Marsh Funnel

Test Batch Summary

Batch	Average Marsh Funnel Test (sec)	Average Sand Content (%)	Density (lb/ft ³)
No Sand	40.03	.25	64.81
Sand	39.3	6.58	68.24

Use density measurements to determine gravimetric sand content

Flow Meter

0,00

Pressurized Flow Tests

Pressure Transducer

2

High Flow / Pressurized

- Bentonite slurry viscosity
 - ranged from 30 to 140 sec/qt
- Flow rates (pumped)
 - 0 to 23gpm
- Density
 - 64 to 66 pcf
- Sand contents
 - 0.25% pure bentonite only

Select System Orifice

- Small orifice is affected most by changes in viscosity
- Large orifice less affected by debris

 Selection of system orifice based on balancing positive benefits

Instrumentation Options

- Magnetic flux flowmeters best for all conductive fluids (especially with suspended solids)
- Open face pressure transducers single source or differential will be used
- Density device should be similarly unaffected by slurry

Density

- Liquid Density Monitor (Archimedes Principle)
- Drop in application

www.eepowersolutions.com/wp-content/uploads/2013/06/SG-100M-Operating-Manual.pdf

System Concepts

- "dive bell"Pressure
 - Flow
 - Density
 - Tethered to air, hydraulic or electric power along with signal leads

Downhole self contained

Depth measured topside

System Concepts

- Pickup hose
- Measure hose depth
- Track flow from a given depth through topside systems.

All topside measurements

 Correlate sample to measurements based on hose position and time in hose / flow

Questions?

