Optimizing the Use of Thermal Integrity System for Evaluating Auger-Cast Piles

Presented by: Gray Mullins, Ph.D., P.E.

Civil & Environmental Engineering

Problem Statement

- Thermal Integrity Profiling (TIP) has proven to be an effective method for evaluating the as-built integrity of drilled shafts.
- However, TIP is rarely used for evaluating auger-cast-in-place (ACIP) piles, as current practices do not require installation of standard integrity access tubes.
- Current integrity methods for ACIP piles is limited, thus their FDOT use has been limited to foundations for sound walls.
- GOAL: <u>Translate the use of thermal integrity technology</u> to an effective method for evaluating ACIP piles.

Research Approach

- Task 1 Literature Review
- Task 2 Numerical Modeling
- Task 3 Feasibility Study of Probe-based Inclination Measurements
- Task 4 Field Testing
- Task 5 Reporting

Research Approach

• Task 1 Literature Review

- Task 2 Numerical Modeling
- Task 3 Feasibility Study of Probe-based Inclination Measurements
- Task 4 Field Testing
- Task 5 Reporting

Source: Dan Brown et al., FHWA-HIF-07-03

ACIP Piles Construction

ACIP Piles Quality Control

ACIP Piles Quality Assurance

Surface methods involving stress wave propagation analysis are the most common form of integrity testing for ACIP piles.

TIP Methods Thermal Wire

New Thermal Wire

Thermal Wire:

• New version of Thermal Wire in production now is much stronger and requires far less cable ties, greatly reducing potential data loss and speeding installation. *The new version of the wire has been deployed on numerous shafts with excellent results

Effects of Alignment and Shaft Radius

TIP Analysis – Concepts

- Integrity of a shaft can be affected by
 - reduced cross section,
 - cage offset resulting in decreased cover, and
 - inclusions of compromised or poor quality concrete,
 - all affect the heat production and temp of the shaft.
- Effective Radius the radius of intact, uniform quality concrete that would produce the measured temperature.
- Temperature \propto Effective Radius

TIP Analysis Suggested Methods & Levels of Analyzing TIP Data

Level 1: Direct observation of the temperature profiles.

Level 2: Superimposed construction logs and concrete yield data. MOST COMMON

Level 3: Three dimensional thermal modeling.

Level 4: Signal matching numerical models to field data.

TIP Analysis - Direct Observation

TIP Analysis - Superimposed Construction Logs & Concrete Yield Data

Research Approach

- Task 1 Literature Review
- Task 2 Numerical Modeling
- Task 3 Feasibility Study of Probe-based Inclination Measurements
- Task 4 Field Testing
- Task 5 Reporting

What we learn from models

- Range of times for analysis/testing
- Best locations for placing sensors/tubes
- Minimum number of tubes/wire
- Size of anomaly that is detected with minimal sensors/tubes
- Effects of drastic changes in external environment (above ground in water or air)

Best Times to Test/Analyze (small window for ACIP)

Best places to take measurements

What's the best location for thermal measurements?

Research Approach

- Task 1 Literature Review
- Task 2 Numerical Modeling
- Task 3 Feasibility Study of Probe-based Inclination Measurements
- Task 4 Field Testing
- Task 5 Reporting

Inclination Measurements

Selection of Inverse Hyperbolic

Range of Predicted Radii for all times (0 to 60hrs)

Signal matching approach yields good results but can be time consuming for everyday practice.