Investigation and Development of a Post Tensioned Pile Splice for Prestressed Piles

Presented by: Gray Mullins, Ph.D., P.E. UNIVERSITY OF SOUTH FLORIDA.

Civil & Environmental Engineering

Splice Requirements

- **Capacity** Spliced section should match both the axial and flexural strength of an un-spliced pile (incl. driving stresses).
- **Ductility** Failure should occur in a ductile manner, not brittle.
- **Durability** Splice components should be corrosion resistant to a level that would not hinder performance throughout the life of the structure.
- Installation Installation should not be overly labor intensive, time consuming, or costly.

Current Practices

Epoxy Doweled Splice

- Predominant method in FL.
- Low material cost.
- Long epoxy cure time.
- Limited flexural and tensile capacity.

Current Practices

Kie-Lock Splice (formerly Sure-Lock)

- Most common mechanical splice.
- Good capacity.
- Some cracking from stress concentrations.
- No prestress adjacent to splice / most common break region
- Does not conform to Buy America provisions.

Over-Stress Upper Segment Embedded anchorages w/ Embedded Strands w/ Combination of Intermediate anchorages full length post tensioning Intermediate Anchorages Intermediate/Embedded (Concept 1) (Concept 2) (Concept 4) (Concept 3)

Modified Concept

Move anchors from top to splice zone

Initial Jacking Forces

Final Splicing Strand Forces

Splice Header Plate

Precision drilled and faced for perfectly mated pile ends

- OTS prestressing chucks
- 2.5"x3"x¹/₂" plate, full weld
- Washer inserts to reduce seating losses

Embedded Anchorages

Splicing

Thread strands in upper pile

Each strand staggered to ease alignment

Strands locked in upper pile (right) while strands slide into and through lower pile anchorages (left)

go to fullscreen, ctrl+click to snap to video size

60. PR

Grout pumped through lower ducts and out all other ducts

4-Point Bending

Load – Deflection Control 2 vs. Splice 2

Effective prestress same; Cracking load same; Ultimate moment16.3% less

Pile Size (in)	No	Strand	Strand Group Moment of Inertia (in ⁴)		Loss
	Strands	Size (in)	Prestressing	Splicing	(%)
14	8	0.5	11.26	9.37	16.8
		standard			
24	20	0.5 special	173.9	168.8	2.9

FULL SCALE 24in BENDING TESTS

Splice Pile

a

One-Piece Pile

One-Piece Pile

Splice Pile

Pile Driving Demonstration

- 24in, 100ft pile
- Spliced with 30ft upper segment (70ft lower)
- Driven along I-4 in Deland area
- Test pile from project used as control comparison

20 Splice Strands (bending tests)

16 Splice Strands (driving demo)

SCC Pile Mix

Lower Pile Honeycombing

Upper Pile Damaged

Initial State Prior to Driving

No change after 1200 blows (70ft embedment)

Test Pile 1 (control)

Test Pile 1-1 (spliced)

Started with 11.75in cushion

At End of Drive

Test Pile

- 115ft long; 99.8ft driven
- 13.75in cushion; 1 change
- 4035 blows
- 150 blows/ft
- 9.9ft stroke
- 1400kip capacity

Splice Pile

- 100ft; 99.4ft driven
- 11.75in cushion; 2 changes
- 3231 blows
- 314 blows/ft
- 9.8ft stroke
- 1660kip capacity

Conclusions

- Post tensioned pile splice was successfully designed that satisfied both bending and driving requirements of an unspliced, onepiece pile
- No splice related stress limits needed
- Original splice concept was adapted to eliminate corrosion susceptibility
- Design is applicable to all FDOT pile sizes

Questions?