

Soil Mixing Design Methods and Construction Techniques for Use in High Organic Soils

Civil & Environmental Engineering

Overview

- Introduction / Problem
- Background, Soil Mixing
- Small Scale Lab Testing
- Design Recommendations
- Large Scale Lab Testing
- Conclusions

Problem: What to do with soft soils

The FDOT Soils and Foundations handbook:

- 1. Reduce fill height
- 2. Provide waiting period to allow for the majority of consolidation to occur
- 3. Increase surcharge height
- 4. Use a lightweight fill
- 5. Install wick drains within the compressible material to be surcharged

- 6. Excavate soft compressible material and backfill with granular soil
- 7. Ground modification such as stone columns, dynamic compaction, etc
- 8. Deep soil mixing
- 9. Combinations of some of the above

Problem: What to do with soft soils

The FDOT Soils and Foundations handbook:

- 1. Reduce fill height
- 2. Provide waiting period to allow for the majority of consolidation to occur
- 3. Increase surcharge height
- 4. Use a lightweight fill
- 5. Install wick drains within the compressible material to be surcharged

- 6. Excavate soft compressible material and backfill with granular soil
- 7. Ground modification such as stone columns, dynamic compaction, etc
- 8. DEEP SOIL MIXING
- 9. Combinations of some of the above

Soil Mixing

- Treat soils in place
- Avoids cost of disposing of potentially hazardous organic soil (remove and replace)
- May be categorized as either wet mixing or dry mixing
- Wet mixing injects grout under pressure while mixing
 - Dry mixing introduces the binder as a dry powder

Wet Soil Mixing

Dry Soil Mixing

12

Soil Mixing Configurations

- Mass soil mixing
- Column supported embankments

DESIGN: FHWA Design Manual for Deep Soil Mixing

- Comprehensive Manual
- Equipment
- Mixing methods
- Binder Types
- Design Procedures
 - Inorganic soils
 - Function of w/c ratio

FHWA Design Manual for Deep Soil Mixing

- "…increasing organic content often requires higher cement content, and organic contents greater than about 10 percent may produce significant interference with cementation."
- "...organic soils tend to **require more binder** than inorganic soils."
- "...soils containing organics/peat are *more costly* to mix."
- "<u>Slag-</u>cement binders can be <u>more effective</u> than pure cement for treating organic soils."
- Uncertainty is addressed, but no solution is offered

Swedish Deep Stabilization Research Centre

- "The organic material . . . <u>negatively affects</u> the reaction rate of the binders..."
- "...the stabilization outcome of a binder <u>cannot</u> at present <u>be</u> definitely <u>predicted</u> merely by determining the organic content..."
- "<u>Cement</u> is often a <u>more effective</u> ... in mud and peat soils."
- "...in soils with high organic contents . . . the quantity of binder <u>needs to exceed a 'threshold</u>' . . . below the threshold the soil will remain unstabilized."

Small Scale Lab Testing

- Test Matrix:
 - Organic Contents: 0-66% (7)
 - Binder Amount: 100-500pcy (5)
 - Binder Type: 0, 50, and 100% Slag (3)
 - Mixing Method: Wet or Dry (2)
 - Curing Time: 14, 28, 60 days, and higher (4)
- 78 batches, 9 cylinders each
- 702 total specimens

Specimen Prep

- Calculate the amount of materials needed for nine 3" by 6" cylinders
- Mix the raw soil alone for approximately 4 minutes in the large mixer
- Measure pH with litmus paper.
- Take small samples to calculate moisture content
- Add dry binder. This is either cement, slag, or both. Mix together for 4 minutes
- Measure pH with litmus paper

Unconfined Compression Testing

Strength vs Organic Content

Strength vs Water-to-Cement Ratio

Strength vs Binder Factor

• Plotting vs one variable is not helpful

Strength vs Organic Content

- Slag replacement was not effective at higher organic contents
- Organic content had little effect over the middle range

Unified Design Approach

Define a Cement Threshold below which soil will remain unstabilized

Find Threshold for all OC

Find Threshold for all OC

Find Threshold for all OC

Threshold Concept Alternate Approach

$$w/c_{effective} = w/c_{in \, place} \frac{CF_{in \, place}}{(CF_{in \, place} - CF_{threshold})}$$

Define "effective water-to-cement ratio" as that value used in FHWA design curve

Select threshold for every test to fit FHWA Design Curve

Cement Factor Threshold (pcf)

Cement Factor Threshold (pcf)

Cement Factor Threshold (pcf)

Raw Data

Cement Factor Threshold Factor Applied

Design Approach

- Given strength requirement, select w/c from FHWA design curve and associate weight of cement
- 2. Select cement factor threshold
- 3. Compute final system volume
- 4. Compute total cement required
 - $wt_{cement} = Step 1 + (Step 2)(Step 3)$

Large Scale Lab Testing

- Confirms small scale findings
- Simulate field conditions
- Compare both wet and dry mixing methods to a control

Wet Mixing	Control	Dry Mixing
------------	---------	------------

Large Scale Test Bed

- Bed partitioned
- Conditioned periodically with rainwater to maintain saturated state

Lab System Model Full Size Wet Mixing Equipment

- Injects Grout
- Monitor
 - Flow rate
 - Rotations
 - Pressure
 - Depth
- Plot data vs depth

Wet Mixing System

Wet Mixing System

Wet Mixing Column Layout

Lab System Model Full Size Dry Mixing

Preps soil with excavator

 Followed by mixing operations where dry cement/binder injected

 Amount of cement known distribution is not

Mass Dry Mixing (prep soil)

Mass Dry Mixing (mixing)

Load Testing Apparatus

Load Testing Apparatus

Load Test Results

Testing Threshold

Full Scale Soil Mixing US331

Conclusions

- A cement factor threshold was defined based on organic content
- w/c of organic soil mixing can be adjusted using this threshold to match the inorganic soil design curve (FHWA)
- This threshold was derived for a specific degree of organic decomposition; values may vary for other degrees
- Field results are far less predicable

Questions?

#C:C

0

1 Kips