Distribution of Chloride, pH, Resistivity, and Sulfate Levels in Backfill for MSE Walls and Implications for Corrosion Testing

Presentation for the 2015 Geotechnical Research in Progress BDV 25 TWO 977-03 Ivan Sokolic, Project Manager

Noreen Poor, Thilanki Rajaguru, and Manjriker Gunaratne

June 3, 2013 through May 31, 2015

Major Sources of Variability in FMs

Assessed through field, laboratory, and inter-laboratory studies

• pH

Condition of electrode, measurement temperature, electrode memory effects, ionic strength of soil

• Minimum Resistivity Water content of test slurry, measurement temperature

Chloride Concentration Soil mass suspended solids or color in

Soil mass, suspended solids or color in sample, incorrect or out-of-date reagents, blank correction

• Sulfate Concentration

Soil mass, suspended solids or color in sample, incorrect or out-of-date reagents, calibration curve

Development of Operating Characteristic Curves

www.statstodo.com

www.six-sigma-material.com

		DECISION			
_		Reject H _o	Fail to Reject H _o		
ACTUAL	H _o True	Type I Error <i>Producer Risk</i> ¤-Risk False Positive	Correct Decision Confidence Interval = 1- œ		
	H _a True	Correct Decision Power = 1-β	Type II Error <i>Consumer Risk</i> ß-Risk False Negative		

Type I (α) error: probability of accepting a backfill when it should be rejected. Type II (β) error: probability of rejecting a backfill when it should be accepted.

 H_{o} : Null Hypothesis $\ H_{a}$: Alternative Hypothesis

How can we obtain a low Type II (β) error, that is, more power to accept a good backfill?

We can

- 1. Further separate the sample mean from the rejection mean,
- 2. Reduce the sample variance,
- 3. Increase the number of samples, which improves the estimate of the sample mean, or
- 4. Increase the risk of accepting a bad backfill,
- 5. Reconsider the design or material.

Replicate Study to Estimate Method Test Errors

ANOVA: Variability was much greater between than within samples.

Inter-Laboratory Study to Expand Test Errors for Multiple Laboratories: Minimum Resistivity, Chloride, and Sulfate

Laboratory	Material A				
Laboratory	Resistivity, ohm-cm	Chloride, ppm	Sulfate, ppm		
Average	12,200	7	4		
St Dev	1,090	8	4		
RSD, %	9.0	110	93		

1 - 1	Material B			
Laboratory	Resistivity, ohm-cm	Chloride, ppm	Sulfate, ppm	
Average	2,310	66	67	
St Dev	433	12	16	
RSD, %	19	18	23	

Note: For material A, chloride and sulfate concentrations were below the method detection levels; for material B, chloride and sulfate salts were added to achieved detectable concentrations.

Inter-Laboratory Study to Expand Test Errors for Multiple Laboratories: pH

Matarial	Average	Standard Deviations		%RSD	
Wateria		Within Lab	Between Labs	Within Lab	Between Labs
Α	9.19	-	0.07	-	0.80
В	7.07	-	0.72	-	10
С	7.76	0.051	0.32	0.66	4.1
D	5.11	0.049	0.15	0.97	2.9

Note: Method procedures were changed for materials C & D.

Operating Characteristic (OC) Curve for pH

Estimated test error was 0.30 pH units. For N = 3 samples, the probability of accepting a good backfill ($5 \le pH \le 9$) was 95% or better for a test error that was at or below 0.40 pH units.

OC Curve for Minimum Resistivity

Estimated test error was 900 ohm-cm. For N = 2 samples and a revised acceptance level of 4,000 ohm-cm, the probability of accepting a good backfill was 95% or better for a test error that was at or below 900 ohm-cm.

OC Curve for Sulfate Concentration

Estimated test error was 22 ppm. For N = 1 samples and an acceptance level of 200 ppm, the probability of accepting a good backfill was 95% or better for a test error as high as 200 ppm.

OC Curve for Chloride Concentration

Estimated test error was 12 ppm (inter-laboratory study only). For N = 1 samples and an acceptance level of 100 ppm, the probability of accepting a good backfill was 95% or better for a test error as high as 100 ppm.

Recommendations

- Revise the FMs for pH, minimum resistivity, chloride, and sulfate;
- Increase the number of independent samples per soil type for pH and minimum resistivity;
- Increase the acceptance limit for minimum resistivity from 3,000 to 4,000 ohm-cm;
- Conduct operator training and laboratory audits of corrosion FMs;
- Conduct a Florida-wide inter-laboratory study of revised FMs within a year of implementation; and
- Re-evaluate the FMs for chloride and sulfate after a two-year data collection period.

