FIELD TESTING AND CALIBRATION OF THE VERTICAL INSITU PERMEAMETER (VIP)

PI: Dr. Ana MohseniCO-PI: Dr. Raphael CrowleyConsultant: Dr. Harald KlammlerGraduate Student: Caitlin Tibbetts

GRIP August 20, 2015

OVERVIEW

- Background
 - VAHIP
 - o VIP
- Project Objective
- Literature Review
- Site Identification
- VIP Testing
- Results
- Moving Forward
 - o VIP
 - VAHIP 2.0

BACKGROUND

- VAHIP Vertical and Horizontal Insitu Permeameter
 - Developed to measure vertical and horizontal permeability
 - 2 flow ports
 - Complex mechanical design
 - Rotation through stages
 - Difficult operation
 - Lengthy assembly and disassembly
 - Cleaning
- VIP Vertical Insitu Permeameter
 - Developed to offer a simpler version of VAHIP
 - 1 flow port
 - Smaller, lighter design
 - Improvement compared to existing insitu permeability techniques

PROJECT OBJECTIVE

- Implement a simple field procedure
- Develop simple and theoretically consistent equations for VIP data interpretation
- Conduct field testing of VIP at multiple sites for validation
- Perform an empirical data analyses comparing VIP data with independent field permeability data
- Tasks:
 - Literature review
 - Site identification
 - VIP testing
 - o Data analyses and empirical equations development
 - Draft and final reports

LITERATURE REVIEW

- Focus → development of direct-push permeameter
 - Faster setup and testing times
 - Simplified procedure
 - Less soil disturbance
 - More detailed permeability measurement
 - Multiple depths
 - Vertical and horizontal permeability
 - More accurate
- Selection of VIP testing procedure and permeability equation
 - Falling head procedure
 - Hvorslev Case C: flush bottom in uniform soil

•
$$k_m = \frac{\pi d^2}{4F(t_{\rm f}-t_{\rm i})} ln \frac{H_{\rm i}}{H_{\rm f}}$$

• Where k_m is the mean (overall) permeability

SITE IDENTIFICATION

- Jacksonville SR-9A
 - 4 dry retention ponds/ditches to manage stormwater runoff along SR-9A/I-295
- Hawthorne SR-20
 - Collection of potential pond locations along SR-20 east of Hawthorne
- Lady Lake SR-500
 - 1 dry retention pond off SR-500 (not performing to design specifications)
- Panama City
 - Small lot east of Panama City airport
 - Previous site investigation not performed

JACKSONVILLE – SR-9A

HAWTHORNE – SR-20

LADY LAKE – SR-500

PANAMA CITY

VIP TESTING

- Testing Procedure
 - Equipment
 - Field testing materials
- Preliminary Testing

 SMO
- Field Testing
 - Jacksonville SR-9A
 - 30 tests over 8 borings
 - Hawthorne SR-20
 - 50 tests over 12 borings
 - Lady Lake SR-500
 - 15 tests over 4 borings
 - o Panama City
 - 9 tests over 3 borings

TESTING PROCEDURE

Setup

- Attach probe to SPT rig
 - Advance to testing depth
- Level support stand for water tank
- Place water tank on support stand
 - Attach water hoses
 - Fill water tank
 - Measure height from ground to base of water tank
- Setup compressed air for flushing
- Fill in data sheet
 - General information
 - Dry eraser marker for water tank

Testing

- Lift ~2 inches to open probe
 - Use hook to hold in place
 - Mark rod with chalk to monitor
- Attach AWJ water connection
- Attach water hose
- Saturate soil for 15 min.
 - Refill water tank as necessary
- Begin test
 - Use stopwatch for time increments
 - Take readings of water level in tank
- Stop test
- Attach air hose to top of water tank
 - Flush probe
- Push down ~2 inches to close probe
- Disconnect hoses

TESTING SETUP

TESTING SETUP

Equipment Checklist

VIP ASSEMBLY:

Item	Inspection	In	Out
Probe	 Clean with wire brush Threading O-ring Tighten set screws 		
Probe Maintenance Set	 Wire brush Allen keys (7/64 & 1/8) Extra set screws Extra O-rings 		
AWJ Connection			
AWJ Water Connections	 One stays connected to AWJ rod and other is if rods are disconnected 		
Water Vessel w/Cap	 Cap (top of water tank) Nuts to secure to stand 		
Support Stand			
Water Hose - Probe/Tank Connection	 Quick connections 		
Portable Air Compressor w/Tank	- Pressure		
Air Hose	 Quick connections 		
Tape Measure			
Stopwatch			
Temperature Gun	- Measure temperature of test water		
Clipboard			
Data Sheet w/Pen	 Extra Thin dry eraser marker for water tank 		

SPT RIG:

Item	Inspection	In	Out
AWJ Rods	 Multiple lengths 		
Grease Sealant			
Water Source	 3 gallon water tank * # of tests 		
Water Hose	 Connects rig water supply to water tank 		
Air Compressor	 Pressure Instead of portable 		
Electrical Source (for rig w/o comp. air)	- 450 W		
Chalk			
Water Level Indicator & Hand Auger	- If pre-drilling is not required (no hole)		

Task	Description
Probe	 Assemble probe and attach AWJ connector Ensure internal connections are tight Attach probe to SPT rig, use grease sealant between the connections
Water Supply	 Setup support stand and secure water tank Place stand on level ground where it will not hinder the SPT rig operation Hanging cap will be in center if level Ensure water hose for probe will reach Ensure water hose to fill tank will reach Attach water hose to base of water tank Place end of hose on top of water tank to prevent flow Fill water tank
Air Supply	 If using air compressor on SPT rig → adjust air pressure to proper level (Table 1) Attach air hose and place near water tank If using portable air compressor → attach to electrical source and fill air tank Adjust air pressure to proper level (Table 1) Attach air hose and place near water tank
Misc.	 Have data sheets and pen attached to clipboard Multiples Thin dry eraser marker for water tank Check stopwatch Have tape measure and chalk ready

BREAKDOWN:

Task	Description
Probe	 Remove AWJ water connection Pull probe out of soil Disconnect AWJ rods Clean probe with water and air if necessary Check set screws and connections Open/close probe to ensure smooth transitions
Water Supply	 Drain water tank away from pathways Ensure cap is tight Disconnect water hose from base of water tank Coil Remove water tank from support stand Breakdown support stand
Air Supply	 Disconnect air hose from air compressor Coil Turn off air compressor
Misc.	 Make sure all data sheets/pen are together and attached to clipboard Ensure data sheet is filled out completely Date, time, weather conditions, etc. Collect stopwatch, tape measure, and chalk Use checklist to ensure all equipment is packed for next location

Procedure for Operating Vertical Insitu Permeameter (VIP)

- 1. Advance probe to desired test depth using SPT rig's direct-push technique*
 - a. Place grease between rod connections
- 2. Lift ~1.6 inches to open the probe (Use tape measure or Figure 1)
 - a. Mark base of rod at ground level to track
- 3. Attach AWJ water connection
- 4. Attach water hose from water tank to AWJ water connection
 - a. Kink the hose to quick connect
 - b. Ensure spring guard is in place at AWJ connection
- 5. Let water drain for 15 minutes to ensure soil is saturated
 - a. Add additional water to water tank if necessary
 - b. Get data sheets/pen and stopwatch ready for testing
- 6. Begin test
 - a. Start stopwatch when water level is at readable mark
 - b. See Table 1 for recording time and total length of test
- 7. Test is complete
- 8. Attach air hose to top of water tank
 - a. Ensure cap is tight on water tank
 - b. Ensure air pressure is at proper level (Table 1)
- 9. Flush water through probe to clean (Table 1)
- 10. While system is flushing, push down ~1.6 inches to close the probe (Use tape measure or Figure 1)
 - a. Previous mark should now be at ground level again
- 11. Disconnect air hose from water tank
- 12. Disconnect water hose from AWJ water connection
 - a. Kink hose to remove and place end on top of water tank to prevent flow
- 13. Refill water tank
- 14. Probe is now ready to be pushed to next test depth
- Repeat

Probe Stages

Test

*Pre-drilling (when direct-push is not viable):

- Stop drill minimum of 1 foot prior to final testing depth
 - Reduces soil disturbance
 - Allows probe to be pushed to final depth
 - Borehole of lesser diameter than probe may be drilled for last foot if material is very stiff
- Ensure probe is closed before advancement
- Continue with normal procedure

Supplemental Information

Soil Type	Air Pressure	Recording Increment	Total Length of Test	Flush Time
Coarse Sand	10 – 20 psi	30 sec	5 min	10 sec
Fine Sand	15 – 25 psi	30 sec – 1 min	5 – 10 min	10 - 30 sec
Silty Sand	20 – 30 psi	30 sec – 1 min	5 – 10 min	10 - 30 sec
Sandy Silt	25 – 35 psi	1 – 5 min	10 – 50 min	10 - 30 sec
Clay	30 – 50 psi	5 – 10 min	50 min	30 sec – 1 min

Table 1: Air Pressure and Testing Times Based on Soil Type*

*Numbers in this table are general approximations and will vary based on actual soil type and field conditions. Proper discretion should be used when selecting values. Initial saturation can be used to estimate appropriate values for the air pressure and time increments. Water tank is rated for 90 psi.

Figure 1: Open/Close Distance for Probe

DATA SHEET				
Site Information:				
Date				
Project Location				
Tested By				
Weather/Notes				
Boring Hole Informat	ion:			

Hole No. Drill Depth (ft) – Station – Offset for pre-drilled hole Test No. Hole Diameter (in) Hole Depth (ft) Water Temperature Water Table (ft) (°C or °F) – circle Distance to Base of Water Tank (in) – measured from ground surface Image: Content of the surface

Test Information:

Reading No.	Time (min)	Height in Water Tank (in)
1	0	
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
12		
13		
14		
15		

Other:

Height Drop during Saturation (in/min)					
Rig Pressure during Advancement (psi)					
Air Pressure for Flushing Probe (psi)					
Soil Description (not classification)					

PRELIMINARY TESTING AT SMO

VIP MODIFICATIONS

- Tapered friction sleeve and AWJ connection adapter
 Prevent soil buildup between connections
- Enlarged set screw on friction sleeve
 - $\circ\,$ More resistance to torque
- Removed internal pin

 Locking mechanism
- Added O-ring to inner rod
 - o Keeps outer casing in place during advancement
- Removed wings on friction sleeve
 - Less resistance during advancement
 - Rotation through "stages" no longer necessary

FIELD TESTING

JACKSONVILLE – SR-9A

- Soil Type
 - Fairly uniform soil type
 - Fine sand to slightly silty fine sand (SP/A-3)
- Location
 - \circ 8 borings
 - Ponds: 140R and 150R
 - \circ 4 8.4 ft testing depths
 - No pre-drilling required
- Permeability
 - o 30 tests
 - $\,\circ\,$ Range: no flow 8.8 x 10^-3 cm/s
 - $\,\circ\,$ Average: 1.8 x 10⁻³ cm/s
 - CV of site: 1.26
 - Spatial variability

HAWTHORNE – SR-20

- Soil Type
 - Wide range of soil types encountered
 - Sand (SP/A-3)
 - Clayey sand (SC/A-2-4/A-2-6)
- Location
 - 12 borings
 - Ponds: P1, Q1, D4, Basin 1 Alt 2, 300, and 900a
 - 5 15 ft testing depths
 - Pre-drilling required for some depths
- Permeability
 - o 50 tests
 - \circ Range: no flow 2.3 x 10⁻² cm/s
 - Average: 4.1 x 10⁻³ cm/s
 - CV of site: 1.42
 - Spatial variability

HAWTHORNE – SR-20

LADY LAKE – SR-500

- Soil Type
 - Ranged from fine sand to clay
 - Silty and/or clayey fine sand (A-2) \rightarrow majority
- Location
 - \circ 4 borings
 - Berm along east side of pond
 - \circ 5 15 ft testing depths
 - Pre-drilling required for 2nd depth (10 ft)
- Permeability
 - \circ 15 tests
 - $\,\circ\,$ Range: no flow 1.1 x 10⁻² cm/s
 - $\,\circ\,$ Average: 1.5 x 10⁻³ cm/s
 - CV of site: 1.77
 - Spatial variability

PANAMA CITY

- Soil Type
 - Fairly uniform
 - Dark brown coarse sand (some fines and wood)
- Location
 - 3 borings
 - \circ 5 15 ft testing depths
 - Pre-drilling required for some depths

Permeability

- \circ 9 tests
- $\,\circ\,$ Range: 1.5 x 10^-3 1.0 x 10^-2 cm/s
- $_{\odot}$ Average: 4.5 x 10⁻³ cm/s
- CV of site: 0.71
 - Spatial variability

RESULTS

- Classification
 - Saturation
 - Soil type
- Overall Results
 - By soil type:
 - Average
 - Minimum and maximum
 - Standard deviation
 - Coefficient of variation
 - Number of tests
- Results by Location
- Final Results

SATURATION AND SOIL TYPE

- Saturation
 - \circ Saturated 43%
 - $\circ~$ Unsaturated 57%
- Soil Type
 - Based on Bowles as cited in FDOT Soils and Foundations Handbook

10 ² 10 ¹ 1	о ^{-о} ю ⁻¹	10-2	ю- ³ к,	cm/s 10 ⁻⁴	10-5	10-6	10-7	ю.е	10
Clean gravel, very coarse sand GW, GP, SW, SP	Clean grovel Clean sands, coarse sand GW, GP, SW GM, SM	and sand mige coarse to mea V, SP	s Med. sond mixtu sond SP, S SC	coarse and silt res, fine s, SW, 5M,	Silty silts, clay,	clays, silty, clayey silt rock-flour	clayey fin s, clays, s, etc.	ne sands	•
Constant head per	neability tes	t preferred	Fa	lling hea	test	Falling h	eod test	with extrem	ne
Field pumping te	ts	3		2		ation tes	frectly fro its.	om consolid	-

Soil Type	Soil Description	Permeability Range (cm/s)		
1	Silt/clay	No flow – 5 x 10 ⁻⁵		
2	Fine sand	5 x 10 ⁻⁵ – 1 x 10 ⁻³		
3	Coarse clean sand	1 x 10 ⁻³ - 1		
4	Clean gravel	1 - 100		

OVERALL RESULTS

• VIP Data

Soil Type	Average (cm/s)	Min. (cm/s)	Max. (cm/s)	Std. Dev. (cm/s)	CV	# of Tests	% of Tests
1	6.6 x 10 ⁻⁶	0	2.4 x 10 ⁻⁵	9.6 x 10 ⁻⁶	1.45	24	33%
2	3.1 x 10 ⁻⁴	5.7 x 10 ⁻⁵	9.5 x 10 ⁻⁴	2.5 x 10 ⁻⁴	0.79	18	25%
3	6.1 x 10 ⁻³	1.0 x 10 ⁻³	2.3 x 10 ⁻²	5.4 x 10 ⁻³	0.90	30	42%

Consultant/FDOT Data

Soil Type	Average (cm/s)	Min. (cm/s)	Max. (cm/s)	Std. Dev. (cm/s)	CV	# of Tests	% of Tests
1	7.5 x 10 ⁻⁶	0	4.5 x 10 ⁻⁵	1.6 x 10 ⁻⁶	2.16	10	21%
2	3.1 x 10 ⁻⁴	6.1 x 10 ⁻⁵	9.2 x 10 ⁻⁴	2.2 x 10 ⁻⁴	0.71	23	49%
3	3.5 x 10 ⁻³	1.0 x 10 ⁻³	8.2 x 10 ⁻³	2.5 x 10 ⁻³	0.72	14	30%

JACKSONVILLE – SR-9A

HAWTHORNE – SR-20

LADY LAKE – SR-500

PANAMA CITY

ALL DATA

WITHIN AN ORDER OF MAGNITUDE

TRENDLINE – POWER FUNCTION

POSSIBLE OUTLIERS

SUMMARY OF DATA

• VIP

- \circ 4 site locations
 - 104 tests
 - 72 depths
- $\,\circ\,$ Permeability range: 1 x 10^{-5} 2 x 10^{-2} \, cm/s
- Consultant/FDOT
 - Various field methods
 - Uncased/cased & constant/falling head
 - Multiple equations
- Comparison
 - o 47 comparisons by depth/soil type
 - 17 outside an order of magnitude
 - 9 no flow conditions
 - 4 in Panama City
 - Remaining 4 attributed to spatial variability in soil

SATURATION DATA

SATURATION DATA

RECOMMENDATIONS

- No correction necessary for VIP permeability values
 - $\circ\,$ Hvorslev Case C equation
- Reduction of testing time
 - \circ 15 min. saturation period
- Modification of probe design
 - Eliminate rotation through "stages"
 - Simplify internal mechanics
 - Remove friction sleeve and wings
 - Allow for smaller diameter
 - Fewer parts
- Adjustments to setup
 - Valve for water hose
 - New AWJ water connection

MOVING FORWARD

• VIP

- \circ Reliable mean (overall) permeability, k_m , measurement
 - $k_m = \frac{\pi d^2}{4F(t_{\rm f}-t_{\rm i})} ln \frac{H_{\rm i}}{H_{\rm f}}$
 - 15 min. falling head test
- Ready for field testing
 - Modifications to design to simplify
 - Adjustments to setup to increase efficiency

• VAHIP 2.0

- Flow theory
 - Vertical and horizontal permeability, k_v and k_h
- o Design
 - Instrumented for better accuracy
 - Simple mechanical design
 - Capable of reaching greater depths

QUESTIONS?

Special thanks to the FDOT field crew – Bruce, Todd, Kyle, and Dalton – for all their hard work during field testing.

