FIELD TESTING AND CALIBRATION OF THE VERTICAL INSITU PERMEAMETER (VIP)

PI: DR. ANA MOHSENI CO-PI: DR. RAPHAEL CROWLEY CONSULTANT: HARALD KLAMMLER

PHD CANDIDATE: CAITLIN TIBBETTS

AUGUST 1, 2014

OVERVIEW

□ Background

- VAHIP
- VIP
- Project Objective
- □ Literature Review
 - Direct-Push Permeameter
- □ Site Identification
 - Lake City
 - Jacksonville
- □ VIP Testing

□ VAHIP – Vertical and Horizontal Insitu Permeameter

- Sponsored research by FDOT
 - Insitu hydraulic permeability device
 - Measure permeability in more time-efficient manner than current borehole methods
 - Developed to measure horizontal and vertical permeability
- 2004 preliminary probe
- 2005 to 2007 updates on the probe
- 2012 "smear proof" probe

Evolution of the VAHIP showing the 2005-2007 second generation model: (A) the horizontal flow position (B) the vertical flow position

Third generation: "smear-proof" VAHIP

□ VAHIP

- Difficult operation
- Development of VIP
- □ VIP Vertical Insitu Permeameter
 - Measures only vertical permeability
 - Improvement compared to existing insitu techniques for permeability measurement
 - Allows testing at several depths using SPT rig

VAHIP & VIP

VAHIP

VIP

□ Preliminary field trial tests with VAHIP and VIP

- Already performed
- Not yet performed
 - Systematic field testing
 - Validation / Calibration at multiple sites
 - Existing independent permeability estimates from current FDOT borehole methods

PROJECT OBJECTIVE

- □ Implement simple procedure to execute the test insitu
- Develop simple and theoretically consistent equations for VIP data interpretation
 - Empirical data analyses comparing VIP data with FDOT borehole data
- Provide user friendly spreadsheet implementation
- **T**asks:
 - Literature review
 - Site identification
 - VIP testing
 - Data analyses and empirical equations development
 - Draft and final reports

LITERATURE REVIEW

Current methods

- Laboratory
 - Soil disturbance
 - Sample size
- Empirical
 - Assumptions
- Field
 - Insitu measurement
 - Larger sample size
 - Limitations
 - Time
 - Complex procedures

LITERATURE REVIEW

Development of direct-push permeameter

- Faster setup and testing times
- Simplified procedure
- Less soil disturbance
- More detailed hydraulic permeability measurement
 - Multiple depths
 - More accurate
 - Vertical and horizontal permeability

SITE IDENTIFICATION

□ Lake City

- 9 auger borings
 - 5, 10, 15 feet depths
- Cased constant head permeability tests
 - Range: 0.0 0.19 in/hr
- Jacksonville
 - 44 auger borings
 - \circ 4 8.4 feet depths
 - Cased & Uncased constant head permeability tests
 - \circ Range: 0.02 9.5 in/hr cased
 - \circ Range: 0.2 18.0 in/hr uncased

LAKE CITY

JACKSONVILLE

VIP TESTING

□ Schedule

- August September
- Boring locations
 - Multiple testing depths per location
 - Saturated and unsaturated
- □ SPT rig
 - Direct-push technique
 - Pre-drilling
 - Larger depths
 - Stiff soil

VIP TESTING

General testing procedure

- Setup water tank
- Attach probe to SPT rig
- Advance probe to testing depth
- Open probe
- Saturate soil for 15 minutes
- Begin test
- Flush and close probe
- Advance probe to next testing depth

VIP TESTING

Preliminary DOT testing

- Tapered friction sleeve and AWJ connection adapter
 - Keep soil from building up between connections
- Enlarged set-screw on friction sleeve
 - More resistance to torque
- Removed internal pin
 - Locking mechanism
- Added O-ring to inner rod
 - Internal resistance keeps outer casing in place during probe advancement

QUESTIONS?

