Effect of Proximity of Sheet Pile Walls on the Apparent Capacity of Driven Displacement Piles (BDV31 TWO 977-26)

Jae H. Chung and Michael T. Davidson (Bridge Software Institute) Michael C. McVay (Geosystems Engineering) Engineering School of Sustainable Infrastructure & Environment University of Florida Gainesville, Florida August 1, 2014

Engineering School of Sustainable Infrastructure & Environment

Agenda

- Introduction
- Project Goals
- Project Tasks
- Research Tasks
 - Numerical Model Development
 - Centrifuge Testing
 - Laboratory Testing
- Research-in-Progress Summary

Introduction

• Effects of Driving Objects in Development of Stress **States Driving activity** Displacement contours of sand Driven object

ng School of Sustainable

Infrastructure & Environment

Introduction

• Effect of Sheet Pile Walls in the Vicinity of Driven Piles

Infrastructure & Environment

Project Goals

- Identify design-relevant parameters for calculating pile capacities in the vicinity of SPWs
- Develop a design chart or/and tabularized matrices for use in calculation of pile-capacity changes
- Methodology:
 - Combined Discrete and Finite Elements Analysis approach
 - Spectrum of verification (laboratory and centrifuge testing)
 - Comparison to load-deformation observation in previous field tests

Project Tasks: Phase 1 Research Tasks

Task 1. Literature Review, Scenario Identification, and Field-Data Acquisition

- Collect data from the literature
- Identify key modeling parameters at macroscopic scale (Continuum Mechanics)
- Characterize micromechanical soil particles interactions using microstructural modeling tools at mesoscopic scale

Sources

- Technical literature
- Design documents

Project Tasks: Phase 1 Research Tasks

• Task 2. Numerical Modeling of Granular Soils

- Methodology for modeling direct shear and triaxial tests of granular soil
- Creation of standardized DEM "soil-unit" library
- Evaluation of Mohr-Coulomb failure envelopes

Triaxial test

Project Tasks: Phase 2 Research Tasks

- Task 3. Numerical Modeling of Driven Structural Members in Granular Soils
 - Parametric-stochastic simulation set
- Task 4. Physical Laboratory Experimentation
 - Centrifuge, triaxial, and direct shear tests
- Task 5. Synthesize Numerical Results
 - Identify trends, and formulate design parameters
- Task 6. Final Report

Progress: Task 1. Literature Review

- Focus 1: Establishing a record of capabilities and limitations of combined DEM-FEM approach
 - Capabilities
 - Allow for modeling of penetration into discontinua
 - Characterization of soil stress state states at meso-scopic scale
 - Challenges
 - Calibration of particle parameters (to achieve desired macro-behavior)
 - Simulation efficiency (dynamic relaxation, particle size)
 - Stress plotting

Progress: Task 1. Literature Review

- Focus 2: Identification and Characterization of Candidate Parameters
 - Geotechnical Parameters
 - Relative density and void ratio; particles packing density
 - Lateral confinement, e.g., change in geostatic stress states
 - Grain size distribution; upscaling particle size to meso-scopic scale
 - Strength (friction angle) and service (shear modulus, Poisson's ratio) parameters

Progress: Task 1. Literature Review

- Focus 2: Identification and Characterization of Candidate Parameters
 - Structural Parameters
 - Installation method (driving energy)
 - Displacement pile configuration (width)
 - Horizontal offset (pile to sheet pile wall)
 - Relative depth (pile tip to embedment depth of sheet pile wall)

- Creation of LS-DYNA Soil Unit Library
- Each unit simulates a macroscopic granular soil behavior
- A total of 8-10 soil 'units' covers a range of soil from loose state to very dense state.
- Pseudo-random distributions of the soil units per geostatistical characterization are simulated to describe in-situ granular^{Source: ESyS-Particle User's Manual} soil conditions.

- Micro-mechanical material properties calibrated to achieve desired macromechanical behavior
- Numerical parameters:
 - Particule Contact friction
 - Particle Contact stiffness

LS-DYNA Parameter Summary	
Prescribed motion with constant velocity, (in/s)	0.013
Number of soil particles above shear plane	2772
Number of soil particles below shear plane	2701
Particle radius, in	0.04
Particle volume, in ³	2.68E-04
Particle inertia, in ⁴	1.72E-07
Particle density, lbm/in ³	2.45E-04
Particle Young modulus, psi	1.00E+07
Particle Poisson ratio	0.17
Gravity, in/s ²	384
Sleeves, top plate, and bottom plate	Rigid
Sliding p-p contact friction (Fric)	0.64
Rolling p-p contact friction (FricR)	0.01
Normal stiffness contact factor (NormK)	0.01
Shear stiffness contact factor (ShearK)	0.0029
Static p-w contact friction	0.55
Dynamic p-w contact friction	0.43
Damping p-p contact	0.05
Damping p-w contact	0.05

*CONTROL_DISCRETE_ELEMENT										
\$	-+1	+2	-+3	+4	+5	+6	-+7	+8		
\$#	NDAMP	TDAMP	Fric	FricR	NormK	ShearK	CAP	MXNSC		
LC DVALA Dentiale to neutrale internetion neuronetone										

Progress: Task 2. Numerical Modeling of Granular Soils **Direct Shear Test Simulation** Uniform vertical force applied to Top Plate Top container translates in +Y and only acts on **Top Soil Particles** Shear plane Bottom container restrained from motion and only acts on Bottom Soil Particles

School of Sustainable

Direct Shear Test Simulation Results

Observational macro-mechanical properties: ϕ (internal friction angles) can be simulated at a set of particle frictional parameters

Direct Shear Test Simulation Results

Progress: Task 2. Numerical Modeling of Granular Soils
Triaxial Compression Test Simulation

Research-in-Progress Summary

- Phase I (12 months; July 2014 June 2015)
- Task 1. Literature Review, Scenario Identification, and Field-Data Acquisition
- Task 2. Numerical Modeling Schemes and Granular Soil Units (ranging from loose to very dense state)

Phase II (18 months; July 2015 - December 2016)

- Task 3. Numerical Modeling of Driven foundation in Granular Soils
- Task 4. Physical Laboratory/Centrifuge Experimentation
- Task 5. Reporting of Findings and Design-Oriented Recommendations
- Task 6. Final Report

References

- Clayton C. R. I, Matthews M. C. and Simons N. E. (1995), "Site Investigation", 2nd Edition, Wiley-Blackwell, England.
- Duncan M. J. and Wright G. S. (2005), "Soil Strength and Slope Stability", 1st Edition, John Wiley & Sons, Inc., USA.
- Das M. B. (2007), "Principles of Foundation Engineering", 7th Edition, Cengage Learning, USA.
- El Shamy U. and Elmekati A. (2009), "An Efficient Combined DEM/FEM Technique For Soil-Structure Interaction Problems", Inter. Foundation Congress and Equipment Expo 2009, ASCE 2009.
- Karajan N., Han. Z, Teng H., and Wang J. (2014), "On the Parameter Estimation for the Discrete-Element Method in LS-DYNA", 13th Inter. LS-DYNA Users Conference, Session: Constitutive Modeling.
- Lambe W. T. and Whitman V. R. (1969), "Soil Mechanics", 1st Edition, Wiley India Pvt. Ltd., India.
- Lee J. and Salgado R. (2000), "Analysis of Calibration Chamber Plate Load Testing", Canadian Geotechnical Journal, 37(1), 14-25.
- Munjiza A. (2004), "The Combined Finite-Discrete Element Method", 1st Edition, John Wiley & Sons Ltd, England.
- Paik K. and Salgado R. (2009), "Effect of Pile Installation Method on Pipe Pile Behavior in Sands", Geotechnical Testing Journal, Vol. 27, No.1, ASTM Int'l.
- Salgado R., Mitchell K. J., and Jamiolkowski M. (1998), "Calibration Chamber Size Effects on Penetration Resistance in Sand", Journal of Geotechnical and Geoenvironmental Engineering 1998.124:878-888.

