

#### Soil Mixing Design Methods and Construction Techniques for Use in High Organic Soils





**Civil & Environmental Engineering** 

#### **Problem Statement**

- Organic soils are problematic for roadway construction; typically, the material is replaced, modified, or bridged.
- In-situ soil mixing is one method that can be used to stabilize the material but the high moisture content and low pH necessitates high binder contents.
- Design and quality control methodologies are required.

#### Project Overview

- Existing Soil Mixing Methods
- Case Histories with Long-Term Performance
- Various Binder Materials
- Techniques for New and Existing Roadways
- Lab / Field Tests to Evaluate Long Term Performance
- Cost Evaluation
- Guidelines for Soil Mixing

### Research Approach

- Task 1 Literature Review
- Task 2 Laboratory Testing
- Task 3 Field Testing and Exploration
- Task 4 Cost Evaluation / Guidelines and Recommendations
- Task 5 Reporting

# Research Approach

#### Task 1 Literature Review

- Task 2 Laboratory Testing
- Task 3 Field Testing and Exploration
- Task 4 Cost Evaluation / Guidelines and Recommendations
- Task 5 Reporting

## Wet Soil Mixing

**Moisture content < 40** 

## Dry Soil Mixing

Moisture content > 60%

#### Strength Considerations



Adapted from Filz, 2012

#### **Design Considerations**

- Bulk or mass soil treatment, or
- Treated deep column supported embankments
- Transfer platform or geo-fabrics may be needed
- Strength of treated soil dictates available quality control measures (e.g. post treatment coring not feasible in weakly treated soils)

#### Column Supported Embankments



# Transfer Platform Thickness

(without geo-fabric)



#### Transfer Platform Thickness (without geo-fabric)





# Research Approach

#### Task 1 Literature Review

- Task 2 Laboratory Testing
- Task 3 Field Testing and Exploration
- Task 4 Cost Evaluation / Guidelines and Recommendations
- Task 5 Reporting

# Organic Laboratory Samples



# Organic Laboratory Samples



## Organic Laboratory Samples





#### **Organic Soil Properties**

- Organic Content = 50-65% (ASTM D 2947-00)
- Moisture Content = 260-300% (ASTM D 2974-00)
- pH = 5.5-7 (ASTM D 4972)
- Resistivity =  $5 \text{ k}\Omega$ -cm (FM 5-551)
- Chloride Content = 590 ppm (FM 5-552)
- Sulfate Content = 35 ppm (FM 5-553)

## Laboratory Testing













## Soil Mixing Test Matrix

- UC tests on 4x8 inch Cylinders
- ◆ 100 300 pcy cement content
- Dry & Wet Mixing
- Starting Soil pH Range from 6 to 9
  - Soda Ash
- Moisture Content (265 to 450%)

#### **Unconfined Compression Testing**





#### Volume Diagram (concrete w/c 0.4 – 4000psi)



#### Volume Diagram (loose sand w/c 3.6 – 100psi)



## Volume Diagram (organic soil w/c 4.5 – 20psi)





# Research Approach

- Task 1 Literature Review
- Task 2 Laboratory Testing
- Task 3 Field Testing and Exploration
- Task 4 Cost Evaluation / Guidelines and Recommendations
- Task 5 Reporting

#### Case Histories

- District 1: SR 33 North of Polk City
- District 2: SR 100 in Putnam County
  - The Rail and Trail Bike Path
- District 5: SR 46 in Sanford
- District 6: US-1 Jewfish Creek
- Turnpike: Milepost 284.7 in Lake County
  - US331: Choctawhatchee Bay Causeway

# US331: Choctawhatchee Bay Causeway

- ~16,000ft bay water crossing
- ~8000ft is filled causeway (late 1930's)
- Very loose fill and natural soils have settled and continue to cause maintenance problems
- Soils: sand, silt, clay and organic material
- Combination of deep and shallow soil mixing used to stabilize causeway portions

#### Bridge

#### North Causeway

#### Middle Causeway

Bunker Cove

Point Washington

**Google** earth

#### South Causeway

2014 Google

### Test Program

- Bench scale tests
- Full scale demonstration elements
- Surcharge test section (19ft embankment)
- Instrumentation
  - Pore pressure transducers
  - Vibrating wire extensioneters
  - Settlement plates

## Design and QA/QC

- Req'd strength 75 150psi
- Depth of treatment
  - 0 10ft full coverage (transfer platform)
  - 10 45ft isolated deep columns
- Bench scale set cement content at ~10-17pcf
- Field demonstration set mixing effort by number of blade revolutions ~350-500
- Settlement control verified by surcharge test



#### Surcharge Test Section

Direction of Stationing



#### Installation of Elements















Head (ft)





### **Inclinometer Evaluation**

| Rod ID | <b>Top of Settlement Rod Lateral</b><br><b>Offset (ft)</b> |              | Vertical<br>error (in) |
|--------|------------------------------------------------------------|--------------|------------------------|
|        | Survey                                                     | Inclinometer |                        |
| NSM13  | 0.58                                                       | 0.56         | 0.14                   |
| NSF20  | 2.32                                                       | 2.10         | 1.06                   |
| NSI21  | 1.36                                                       | 1.40         | 0.61                   |
| NSC25  | 2.41                                                       | 3.00         | 3.32                   |



# **Tracking Quality**

- On-board computer systems may malfunction and could be "manipulated"
- Should verify via manual readings
  - Daily cement usage
  - Location of elements
  - Watching depth of rig
- Coring and UC tests are good where possible
- Weaker soil mix designs may not be able to retrieve cores (need alternate method)

### Interim Conclusions

- While cement content and w/c ratio are key components to strength, organic soils will still require more cement
- Long term settlement surveys shows no discernible movements (some distress between treated and untreated regions of Jewfish Creek site)

#### **Interim Conclusions**

- Post treatment performance evaluation should be considered during design
  - strong enough to core or use alternate method
  - will geo-fabric hamper sampling
- Automated field QC should be supplemented with manual QA logs



## Questions?

