

Ground Tire Rubber (GTR) as a Stabilizer for Subgrade Soils FDOT Contract Number: BDK81 977-03

Paul Cosentino, Ph.D., P.E. PI
Albert Bleakley, Ph.D., P.E. PI
Alex Armstrong
T.J. Misilo III
Amir Sajjadi

David Horhota, Ph.D., P.E. PM

July 31, 2014

Problem Statement

- GTR supplies may increase when not used in Hot Mix
- Are other highway applications possible?

Outline

- Objectives
- Task overview
- Results

Objective

Determine the key pavement engineering properties of GTR and stabilized Florida subgrade soil blends

Tasks

- Task 1 Literature Search
- Task 2 Determine GTR Sources
- Task 3 Determine Subgrade Sources
- Task 4 Test Program Development
- Task 5 Database Development
- Task 6 Sampling
- Task 7 Testing
- Task 8 Data Reduction
- Task 9 Data Analysis
- Task 10 Technology Transfer

Literature Search

- **Density**
 - Decreased with increase of GTR
- **LBR**
 - Decreased with increase of GTR
 - Smaller sizes of GTR result in larger decreases of CBR/LBR
- Resilient Modulus
 - Decreased with increase of GTR.
- Permeability
 - Increased slightly with maximum percentages of rubber
- **Consolidation**
 - No literature on Consolidation of granular soils was found
- Creep
 - Minimum failure strain at ~3%

GTR Subgrade Choices

- Three soil types (FDOT SMO Aided)
 - \triangle Low LBR (20) A-3
 - Medium LBR (40) − A-2-4
 - ₩High LBR (80) -A-2-4
- FDOT approved GTR supplier with three sizes
 - 1 inch (Range: 1-inch to 3/8-inch)
 - 3/8 inch (Range: 1/2-inch to #4 sieve)
 - #40

Global Tire Recycling Plant Site Visit

Testing Program

- 1. Atterberg Limits
- 2. Optimum Moisture Content
- 3. Sieve Analysis
- 4. Volumetric Mixing
- 5. LBR
- Resilient Modulus
- 7. Creep
- 8. Permeability
- 9. Consolidation

Subgrade Only

Subgrade GTR Blends

Atterberg limits

- Low LBR Subgrade
 - No fines
- Medium & High LBR Subgrade
 - No plastic fines

Moisture Density (Modified Proctor)

Test Results: Optimum Moisture Content

Source	Maximum Dry Density	Optimum Moisture Content
	(pcf)	(%)
Low LBR	107	12.5%
Medium LBR	115	10.0%
High LBR	122	7.5%

Sieve Analyses

Sieve Analysis Results

Grain Size Characteristic	Low LBR Material	Medium LBR Material	High LBR Material
Uniformity Coefficient	2.2	2.0	4.1
Curvature Coefficient	1.1	63.9	1.4
Passing # 200	5%	20%	12%
AASHTO Classification	A-3	A-2-4	A-2-4
USCS Classification	SP	SM	SM

Volumetric Blending

- Mixing by volume used in the field 4%, 8%, 16%, 24%, 32% GTR by volume
- **Corresponds** to
 - 1/2", 1", 2", 3" and 4" GTR layers in a 12" lift

Lab Blending Equivalences

Soil Type	GTR % by Weight	GTR % by Volume
High LBR	1.1	4
	2.3	8
	4.7	16
	7.1	24
	9.7	32
Medium LBR	1.2	4
	2.4	8
	4.8	16
	7.4	24
	10.0	32
Low LBR	1.3	4
	2.6	8
	5.3	16
	8.0	24
	10.9	32

Blending

LBR

LBR (cont.)

Limerock Bearing Ratio
15 lb surcharge for subgrade

Limerock Bearing Ratio Results

Subgrades

Soil	Soaked LBR
High LBR	88
Med LBR	38
Low LBR	20

Limerock Bearing Ratio Results

High LBR Blends

Medium LBR Blends

Low LBR Blends

40 Blends Worst

Limerock Bearing Ratio Results

High LBR Blends

Medium LBR Blends

Low LBR Blends

Largest Decrease # 40

Resilient Modulus

Tests performed by the State Materials Office (SMO)

% GTR vs. Resilient Modulus

Creep

High LBR Material

Strain vs. Duration High LBR Material

30-Year Deflection Projection High LBR Material

Medium LBR Material

Strain vs. Duration Medium LBR Material

30-Year Deflection Projection for Medium LBR Material

Low LBR Material

Strain vs. Duration Low LBR Material

30-Year Deflection Projection for Low LBR Material

Strain Rate vs. GTR % for each Soil Type

- Creep not a concern
- All relatively acceptable if 10
- #40 with Low Material will produce 0.3 % strain over 30 years

Permeability

Constant Head Permeability Test Set-up

Test Results: Constant Head Permeability

- Virgin Material
 - One Order of Magnitude Differences

	Hydraulic
	Conductivity, k
Soil	(cm/sec)
High LBR	1.2 x 10 ⁻⁵
Medium LBR	2.8 x 10 ⁻⁶
Low LBR	3.7 x 10 ⁻⁴

Constant Head Permeability

High LBR Blends

Medium LBR Blends

Low LBR Blends

Very little change for all cases

Low LBR Material

No significant change

Soil	GTR	k (cm/sec)
Low LBR	0	3.7E-04
Med LBR	0	4.2E-06
High LBR	0	6.3E-06

Consolidation

Custom 4-inch Consolidation Molds

Consolidation

Virgin Material Slope

	Compression Index,
Soil	C_{e}
High LBR	0.010
Med LBR	0.007
Low LBR	0.008

Consolidation Results

High LBR Blends

Medium LBR Blends

Low LBR Blends

- 1" and 3/8 " produce no change
- # 40 blend causes change

Consolidation Results

High LBR Blends

Medium LBR Blends

Low LBR Blends

- No clear trends
- Typical clays
 - 10^{-3} to 10^{-4}
- Much higher

Summary

- With increasing GTR %:
 - **Density decreases**
 - **LBR** decreases
 - Resilient Modulus decreases
 - No significant Creep
 - Not Consolidating
 - No significant change in Permeability

Conclusions

GTR Subgrade blends are not desirable for highway use

LBR

- Decreases linearly with an increase of GTR
- #40 mesh GTR blends produced largest LBR decrease
- Low and Medium LBR subgrade blends were classified as unsuitable for use as a subgrade material
- High LBR subgrade blends with 1-inch GTR and 3/8-inch GTR produce acceptable LBR's up to 8% GTR by volume
- #40 GTR High LBR blends produce acceptable LBR's only at 4% GTR by volume

Conclusions

- **Constant Head Permeability**
 - High LBR soil blends produce a small increase in k
 - Low and Medium LBR soil blends showed no significant k changes
- **Consolidation**
 - Compressibility of 1"and 3/8" blends showed no change compared to virgin material
 - Compressibility of #40 mesh GTR blends increased by three to five magnitudes over the virgin material
 - C_v values in the soil/GTR blends were three to four orders of magnitude larger than typical remolded clays

Recommendations

- Blends of High LBR Subgrade with minimal GTR concentrations could be suitable for the subgrade layer
- Could be suitable as a possible lightweight, non-structural backfill due to decrease in density and increase in internal friction angle

Questions?

