

Defining the Upper Viscosity Limit for Mineral Slurries used in Drilled Shaft Construction

GRIP 2014 Gray Mullins, Ph.D., P.E..

Civil & Environmental Engineering

ERSITY OF

SOUTH FLORIDA

Two Primary Concerns

 At what point does increased viscosity become too thick to easily displace during concreting?

 At what point does increased viscosity affect side shear capacity?

Research Approach

- Task 1 Literature Review
- Task 2 Rebar Pull-out Testing
- Task 3 Laboratory Side Shear Testing
- Task 4 Full Scale Side Shear Testing
- Task 5 Reporting

Task 1: Literature Review

- Updated State Specifications
- Effects on Bond Strength
- Rheology of Bentonite

Current Slurry Specifications

Slurry Property	Mineral Slurry Required Ranges	Polymer Slurry Required Ranges	Test Method
Density	64 – 73 pcf (fresh water) 66 – 75 pcf (salt water)	62 – 64 pcf (fresh water) 64 – 66 pcf (salt water)	Mud density balance: FM 8-RP13B-1
Viscosity	30-50 sec	Viscosity Range Published By The Manufacturer for Materials Excavated	Marsh Cone Method: FM 8-RP13B-2
pН	8-11	pH Range Published By The Manufacturer for Materials Excavated	Electric pH meter or pH indicator paper strips: FM 8-RP13B-4
Sand Content	4% or less	0.5% or less	FM 8-RP13B-3

Manufacturer's Recommendations

- Clay
 - 40-45 sec/qt (Wyo-Ben)

General / Normal Conditions

- 45-55 sec/qt (Wyo-Ben)
- 30-35 sec/qt (CETCO)
- Sand and Gravel
 - 55-65 sec/qt (Wyo-Ben)
 - 30-40 sec/qt (CETCO)
- Fluid Loss Control
 - 40-45 sec/qt (CETCO)

Material Being Drilled	Sediment Grain Size	Marsh Funnel Viscosity (seconds/quart)
Natural swelling clays*	<0.08mm	32 to 37
Non-swelling clays and fine sand	0.08-0.43mm	40 to 45
Medium sand	0.43-2.0mm	45 to 55
Coarse sand	2.0-4.8mm	55 to 65
Gravel	4.8-19.0mm	65 to 75
Coarse gravel	>19.0mm	75 to 85

www.clean-water-for-laymen.com

Rebar Bond Strength

- Butler (1973), Fleming and Sliwinski (1977), Federation of Piling Specialists (1975)
- "The current state of knowledge on this topic suggests that the use of mineral and polymer slurries for drilled shaft construction does not reduce the bond resistance between concrete and reinforcing bars. There is currently no reason to account for the use of drilling fluids when considering development length of rebar in drilled shafts." (FHWA 2010)

Fleming and Sliwinski (1977),

- Bentonite displaced specimens
 - Rebar tied to stirrups in a line
 - Concrete flow not representative of tremie placement in shafts
- Plain concrete specimens
 - Rebar stabbed into already poured concrete
 - Not tied to stirrups

Pile / Seal Slab Bond

Mullins, G., Sosa, R. and Sen, R. (1999). "Seal Slab/Pile Interface Bond". *Final Report* submitted to Florida Department of Transportation, November, 151 pp.

Task 2: Rebar Pullout Testing

- 42 inch Diameter
- 24 inch Depth
- 14 #8 Main Bars
 - 7 Threaded for Pullout
 - Varying Bond Length
 - 6 inch Clear Spacing
- Varying Viscosities & Slurry Type

Placement/Casting Conditions

- Tremie Placed Concrete
- 126 Rebar Pull-out Tests
- Slump 8.25 9 inches
 - Water (28 sec/qt)
 - Bentonite (30, 40, 50 and 90 sec/qt)
 - Polymer (60 and 90 sec/qt)

Rebar Pullout Testing Setup

Bentonite 30 sec/qt

Ultimate Concrete Shear Stress (0.5f'c)

Durability Evaluation After Pressure Washing

40 sec

Concrete Cores

Concrete Core – 50 sec/qt

Concrete Core – 50 sec/qt

Concrete Core – 90 sec/qt

Task 3: Laboratory Side Shear Evaluation

- Pull out tests in FCV
- 36 inch Long
- 4 inch Diameter
- Varying Viscosities & Slurry Type

Loosely Placed Sand

Stress Sand in Cell and Excavate

LET'S

THIS.

Place Tremie and Attach Hopper

Install Full-length Threaded Rod

Pull out Testing

Disassemble and Remove Shaft

Polymer Slurry (60 sec/qt)

Task 4: Full Scale Side Shear Evaluation

- 12 shafts tested in tension
- 18ft Long
- 20-24 inch Diameter
- Varying Viscosities & Slurry Type
 - Bentonite 40 to 90 sec/qt
 - Polymer 60 to 132 sec/qt
- CPT soundings at each location

Tip Stress (TSF)

8

P-1

B-2

P-3

B-1

P-2

B-3

AMERICAN COLLOID COMPANY

50 lbs / 22.68 kg

Shore Pac

Foundation Drilling Polymer

CONTRACTORS Market and the second second

Not Contents: 26 (be (16.33 bd)

Bentonite 40 to 90 sec/qt

Polymer 60 to 130 sec/qt

Cover Effectiveness

Cover Effectiveness

90 sec/qt Bentonite

-

50 sec/qt Bentonite

40 sec/qt Bentonite

30 sec/qt Bentonite

W

60 sec/qt Polymer

Corrosion Monitoring

We think this is the exception.

But is it the norm?

Conclusions

- The presence of bentonite does affect rebar bond very much like that shown for piles in seal slabs.
- However, current estimates of required development lengths underestimate true capacity.
- Higher viscosity bentonite slurry does not affect side shear capacity (relative to 40 sec/qt viscosity)
- Concrete flow through reinforcing cage can cause undesirable effects on durability.

Questions?

