FIELD TESTING OF JET-GROUTED PILES AND DRILLED SHAFTS

BDK-75-977-41

Project Managers: Peter Lai, P.E. Rodrigo Herrera, P.E.

Principal Investigator: Michael McVay, Ph.D.
 Co-Principal Investigator: David Bloomquist, Ph.D., P.E.
 Primary Researcher: Sudheesh Thiyyakkandi, Ph.D.

² Background

- Recently, FDOT developed a new foundation system -"jetgrouted pile" (BD545-31 and BDK-75-977-07)
- Previous chamber tests showed that the pile has high axial and torsional resistance
- Requires verification in typical field condition
- Recently FDOT revised design approach (torsional resistance) for drilled shaft supporting Mast Arms
- Past FDOT laboratory research (i.e. centrifuge testing, BC354-09) showed that lateral resistance was <u>reduced</u> <u>significantly</u> by torsion

3 Objectives of the Research

- Validate design and constructability of jet-grouted piles
- Obtain combined torsion and lateral load response of drilled shafts
- Verify FDOT's revised design approach for drilled shafts supporting Mast arm structures
- Compare axial, lateral, and combined torsion & lateral response of jet-grouted pile vs. drilled shaft
- Cost comparison of jet-grouted piles vs. drilled shafts

4 **Test Layout**

Test site: FDOT site, Kingsley, Keystone Heights, FL

Two, 4ft diameter x 55ft deep Reaction drilled shafts

- One, 4ft diameter x 12ft deep Test drilled shaft
- Two, 28in square x 18ft deep jet-grouted piles

UF FLORIDA

5 Presentation Overview

- Soil Exploration
- Construction of reaction and test drilled shafts
- Construction of jet-grouted piles
- Axial response of drilled shaft and jet-grouted piles
- Combined torsion and lateral response of drilled shafts and jet-grouted piles
- Lateral response of drilled shaft and jet-grouted pile
- Cost comparison: Jet-grouted pile vs. Drilled shaft

6 Soil Exploration at Test Site

- Performed by State Material Office, Gainesville.
 - In-situ tests:
 - ✓ SPT at the foot print of each shaft/pile
 - ✓ CPT at an interval of 6ft between shafts/piles
 - \checkmark PMT at the foot print of jet grouted piles
 - ✓ DMT near jet grouted piles and shaft TS2
 - Laboratory Tests:
 - ✓ Classification tests
 - ✓ Direct shear Tests –Sand
 - ✓ UU-test Clay

7 Construction of Reaction and Test Drilled shafts

- Wet construction method (using bentonite slurry)
- Test Shaft Instrumentation/Monitoring tubes:
 - ✓ 4 CSL tubes @ 90⁰ apart
 - ✓ Inclinometer casing in 18ft long shafts (TS2 and TS3)
 - ✓ Sister-bar strain gages in pairs at 4 different levels (TS2)

Pipe and flange connector

(for combined torsion and lateral loading)

8 Construction of Jet-grouted Piles

Side grout delivery system

Jetting system

Attaching Grout Membrane

Attaching nozzles

9

Pile Jetting

Performed with the help of Reliable constructors Inc. and SMO, Gainesville

Concrete cap for jet grouted piles

 To transfer forces and moments from Mastarm assembly to pile during combined torsion and lateral load test

Precast Cap

Cast-in Place Cap

Side Grouting of Piles

Performed with the help of Applied Foundation Testing Inc. (AFT)

Grout volume = 300-340 gallons

Side grout pressure and cylindrical cavity expansion pressures

	Top mer	nbrane	Bottom m	nembrane
	JP1	JP2	JP1	JP2
Measured Maximum Pressures (psi)	100-120	90-100	140-160	180-200
Yu and Houlsby's solution (psi)	110	110	224	224
Salgado and Randolph's chart (psi)	116	116	210	210
PMT (psi)	113	85	198	153

Tip Grouting of Piles

	Grout volume (gallon)					
JP1	140					
JP2	59					

Tip grout pressure and spherical cavity expansion pressure (psi)

	Pile 1	Pile 2	
Measured tip grout pressure	290	280-300	
Yu and Houlsby's (1991)	509	509	60% of spherical cavity
Salgado and Randolph (2001)	522	522	limit pressures

14 Axial response of drilled shaft and jet-grouted piles

Axial Response – 4ft Ø x 18ft deep drilled shaft (TS2)

Static top down load test (ASTM D 1143/D 1143M – 07)

Load cell - 600 kips

Hydraulic jack – 2000 kips

Shaft head displacement monitoring:

- Digital dial gages
- Mirrored scale with wire line reference

16 Axial Response – 4ft Ø x 18ft deep drilled shaft (TS2)

Unit skin prediction methods

CPT based methods Aoki and Velloso's method SPT based methods $f_{si} = \frac{\alpha}{F_s} \cdot q_{ci}$ O'Neill and Hassan (1994) method $F_2 = 6.7$ for drilled shafts $f_s = \beta \sigma'_{,v}$ Alpha (a) method α = resistance factor depends on soil types (for cohesive soils) $\beta = 1.5 - 0.135\sqrt{z}$ for $N_{60} > 15, 0.25 \le \beta \ge 1.2$ 2) LCPC method $f_{si} = \frac{q_{ci}}{q_{ci}}$ $\beta = \frac{N_{60}}{15} (1.5 - 0.135\sqrt{z})$ for Neo <15 $f_{\alpha} = \alpha s_{\alpha}$ $\alpha = 0$, for top 5ft depth α_{LCPC} - depends on pile and soil types Rational method (FHWA 2010) $\alpha = 0.55$, for $(s_u/P_a) \le 1.5$ 3) UIUC Method (Alsamman 1995) $f_s = \beta \sigma'_v$ $\beta = (1 - \sin \phi') \left(\frac{\sigma'_p}{\sigma'_n}\right)^{\sin \phi'} \tan \phi' \le K_p \tan \phi'$ Sand / silty Sand: $\alpha = 0.55 - 0.1 \left(\frac{s_u}{p_z} - 1.5 \right),$ $f_s = 0.015 q_c$ for $q_c \le 50 \text{ tsf}$ for $1.5 \leq (s_u/P_a) \leq 2.5$ $\frac{\sigma'_p}{p} \approx 0.47 (N_{60})^m$ $f_s = 0.0012 q_c + 0.7 \le 1.0$ for $q_c \ge 50$ tsf Clay:

Jidy.

 $f_s = 0.023 (q_c - \sigma_{vo}) \le 0.9$

UF FLORIDA

Axial Response – 4ft Ø x 18ft deep drilled shaft (TS2)

Estimation of soil parameters for the prediction

Unit weight:
$$\frac{\gamma}{\gamma_w} = 0.27 \left[\log R_f \right] + 0.36 \left[\log \left(\frac{q_c}{P_a} \right) \right] + 1.236$$

Robertson and Cabal (2010)

Angle of internal friction:
$$\phi' = \tan^{-1} \left[\frac{N_{60}}{12.2 + 20.3(\sigma'_{\nu 0}/P_a)} \right]^{0.34}$$

Schmertmann (1975)

Undrained shear strength: UU test

18

Axial Response – 4ft Ø x 18ft deep drilled shaft (TS2)

Static Load Test

Loading sequence: JP1 - Axial load test **BEFORE** torsion test

JP2 – Axial load test AFTER torsion test

Data acquisition

Displacement monitoring: Leica Digital levels Digital dial gages Mirrored scale with wire line reference

Load distribution

Similar stiffness response

UNIVERSITY of

 Negligible influence of prior torque test in JP2

Statnamic Load Test – JP1

Performed by Applied Foundation Testing, Inc.

Measured Skin resistance = 450 kips

Prediction of skin resistance

1) K_g method [Thiyyakkandi et al. (2013)]

UNIVERSITY of

From pressure cell data

K_g (dimensionless)

Back calculated from pile's unit skin friction

Prediction of skin resistance

2) Using tip grout pressure

Skin resistance = Max. Sustained tip grout pressure x Eff. Tip area-

3) Using Pressuremeter data

Soil Profile

Predicted vs. Measured Skin resistance

thod	Pile	Grout zone	Zone length <i>H(<u>f</u>t)</i>	Depth to middle of zone (ft)	Initial vertical eff. stress at middle ଙ _w (psf)	<i>K</i> ₂ at middle <i>Fig</i> .2-6	Grouted vertical eff. stress o ['] vg=Kg o'vg (psf)	δ-φ	f₅ (psf) (Eq. 2-2) (δ - φ)	A₃ Surface area <i>(ft²)</i>	Qs Side resistance (kip) (δ - φ)	Total (kip) (δ - φ)
ne	ID4	Тор	7	6.5	717.3	2.33	1671.3	23.8°-34°	1035-1758	83.84	87-147	225 404
L D	JET	Bottom	7	14	1305.6	2.00	2611.2	25.2°-36°	1752-3012	84.29	148-254	233-401
X	102	Тор	7	6.5	730.0	2.33	1700.9	23.8°-34°	1053-1789	83.39	88-150	230-400
	JP2	Bottom	7	14	1331.4	2.00	2662.8	25.2°-36°	1787-3072	85.77	151-259	233-409

MT	Pile	Grout zone	Zone length H(ft)	δ	Horizontal stress after grouting, ថ្លា (psi) Fig. 6-16	f₅ = σ _b tan(δ) (psf)	A₅ Surface area (ft²)	Qs Side resistance (kip)	Total (kip)
g F	104	Тор	7	23.8°	22	1397	83.84	117	402
sin	JP1	Bottom	7	25.2°	50	3388	84.29	286	403
Š	182	Тор	7	23.8°	16	1016	83.39	85	211
	012	Bottom	7	25.2°	39	2643	85.77	227	511

TGI	Pile	Tip grout pressure	Effective tip area	Side resistance
D		(psi)	(1112)	(kips)
Ü	JP1	290	1231	357
Us	JP2	280-300	1231	345-369

be		JP1	JP2
ure	Top zone	97	60
eas	Bottom Zone	151	173
Me	Total	248 (450*)	233

26

JF FLORIDA

*Statnamic

27 Axial Response Comparison

<u>Unit skin</u>

Sogmont	Unit skin (<i>ksf</i>)				
Segment	JP1	JP2	Drilled shaft		
Top membrane (3 – 10ft)	1.16	0.720	0.591		
Bottom membrane (10.5- 17.5ft)	1.79*	2.02*	0.852		

*Not fully mobilized

Mast arm-Pole assembly

- Designed to ensure pile/shaft soil failure (no structural failure)
- Fabricated at Coastal Engineering lab, UF

	Length (ft)	Diameter (in)	Thickness (in)	Taper angle (deg)
Arm	40	20	0.625	0
Pole	22	24	0.625	0

Drilled shafts

20kips tension load cell

Lateral load applied at an eccentric distance of 35ft

30 Combined Torsion and Lateral Response Rotation and translation monitoring 1) String pots Pull direction Pole Drilled shaft Mast arm String pots UF FLORIDA

³¹ Combined Torsion and Lateral Response

Rotation and translation monitoring

2) Total Stations

Rotation and translation monitoring

3) Digital dial gages

33 Combined Torsion and Lateral Response Drilled shafts

Comparison of rotation response from different instrumentations (TS2)

³⁴ Combined Torsion and Lateral Response

Drilled shafts

TS1: Max. lateral displacement ≈4in

³⁵ Combined Torsion and Lateral Response

Drilled shafts: Torsional resistance prediction

1) FDOT's ω method:

$$T_{s} = \frac{\pi D^{2}}{2} \int_{0}^{L} f_{sz} dz$$

$$f_{sz} = \sigma'_{vz} \omega_{FDOT}$$

$$\omega_{FDOT} = 1.5 \quad \text{for } N_{60} > 15$$

$$\omega_{FDOT} = 1.5 \left(\frac{N_{60}}{15}\right) \quad \text{for } 5 < N_{60} < 15$$

$$T_{t} = \pi \left(\frac{D}{2}\right)^{2} L\gamma_{conc} \left(\frac{D}{3}\right) \tan \delta$$

Tip contribution

2) O'Neill and Hassan (1994) method

3) Rational method (FHWA 2010)

Soil profile

F FLORID

Drilled shafts: Torsional resistance prediction

Method	TS1			TS2			TS3		
	Skin (kip- <u>ft</u>)	Tip (kip- <u>ft</u>)	Total (kip- <u>ft</u>)	Skin (kip- <u>ft</u>)	Tip (kip- <u>ft</u>)	Total (kip- <u>ft</u>)	Skin (kip- <u>ft</u>)	Tip (kip- <u>ft</u>)	Total (kip- <u>ft</u>)
Measured			70			210			171
FDOT's ω method	99	25	124	264	30	294	249	28	277
O'Neill and Hassan (1994)*	80		80	189		189	191		191
Rational method) FHWA 2010*	119		119	253		253	236		236
Based on axial load test*				(282) 251**		(282) 251**			

*No tip contribution is considered (Hu et al. 2006) **Corrected for Water Table

Lateral resistance Reduction:

Using the force and moment equilibrium approach (Hu et al. 2006):

For TS1, Ultimate lateral resistance (no torsion) = 15.7 kips -

According to Hu et al. (2006) lateral overturning resistance is significantly reduced by torsion. (function of <u>lateral load eccentricity, e</u>)

Pole

shaft

³⁹ Combined Torsion and Lateral Response

Jet-grouted pile

Loading sequence: JP1 - Torsion test AFTER axial load test JP2 – Torsion test BEFORE axial load test

UNIVERSITY of FLORIDA

Jet-grouted pile

Measured and predicted torsional resistance

Pile	Method	Torsional Resistance (kip-ft)
	Measured (kip)	487*
	Kg method (kip)	450ª - 768 ^b
JET	Pressuremeter data (kip)	772
	Tip grout data (kip)	684
	Measured* (kip)	426*
כםו	Kg method (kip)	456ª - 783 ^b
JP2	Pressuremeter data (kip)	598
	Tip grout data (kip)	661-707

*not fully mobilized

^a using interface friction angle (δ)

^{*b*} using soil's friction angle (ϕ)

Comparison

Design wind speed =130mph

Forces and moments	JP1	JP2	TS2	TS3	E7-T6 Mast arm*
Torsion, M _y (kip-ft)	487	426	210	171	258.8
Moment about axis of arm, M _x (kip-ft)	278	243	120	97.6	149
Moment about axis normal to arm, M _z (kip-ft)	118	118	118	118	116.6
Lateral load, V _x (kips)	0	0	0	0	0.3
Lateral load, V _z (kips)	13.9	12.17	6	4.88	7.4
Axial load, V _y (kips)	10.7	10.7	10.7	10.7	5.6

Coordinate system

42 Lateral Response of Drilled Shaft and Jet-grouted Pile

Lateral load test

ulic jack Load cell

Test shaft

In-place Inclinometers

43 Lateral Response of Drilled Shaft and Jet-grouted Pile

Drilled shaft's displacement profile using inclinometer data

44 Cost Comparison: Jet-grouted Pile vs. Drilled Shaft

28 in square x 18 ft deep and 48-in Ø side grout zones

Axial Resistance (kip)	Torsional Resistance (kip-ft)	Cost
1000	750	\$9940.00

4-ft Ø x 18-ft-deep drilled shaft

Axial Resistance (kip)	Torsional Resistance (kip-ft)	Unit price	Dirt Haul	Total
400	210	\$8,500.00	\$200.00	\$8,700.00

Based on quote at the same site

BDR cost estimate - equivalent drilled shaft

	Shaft size	Cost	% cost > jet- grouted pile cost
Torsional equivalent	4 ft Ø x 30 ft deep	\$12,900	29.8%
	5 ft Ø x 25 ft deep	\$12,750	28.3%
Axial equivalent	4 ft Ø x 45 ft deep	\$19,350	94.7%
	5 ft Ø x 35 ft deep	\$17,850	79.6%

 Considerably high axial and torsional resistance for jet-grouted piles

> Axial resistance: > 3 x similar sized drilled shaft Torsional resistance: > 2.5 x similar sized drilled shaft

- All CPT based methods highly under/over-predict axial resistance of drilled shaft
- Torsional resistance prediction for drilled shafts:
 - ✓ FDOT's ω -method over-predicts by 25-45%
 - ✓ O'Neill and Hassan method(1994) predicts reasonably well (±10-14%)
 - ✓ FHWA's rational method over-predicts by 20-70%

46 Conclusions (contd..)

- Field Tests support FDOT centrifuge study (McVay et al. 2003; Hu et al 2006), i.e., lateral resistance is significantly reduced by torque
- Lateral stiffness of jet-grouted pile was found to be greater than similar sized drilled shaft
- Construction and installation cost of jet-grouted pile is less than equivalent capacity drilled shaft

 \checkmark 22% less than torsionally equivalent shaft

 \checkmark 44% less than axially equivalent shaft

 Jet-grouted pile - a viable foundation alternative for FDOT pole/mast arm structures

47 **References**

- 1. Brown, D.A, Turner, J.P, and Castelli, R.J (2010) Drilled shafts: Construction Procedures and LRFD design methods, FHWA NHI-10-016.
- 2. FDOT MathCAD Program: Mastarm v4.3.
- 3. FDOT Structures Manual, Vol. 9, 2013.
- 4. Hu, Z., McVay, M., Bloomquist, D.,; Herrera, R., Peter Lai, P., (2005) "Influence of Torque on Lateral Capacity of Drilled Shafts in Sands", Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 132, No. 4, p.456-464.
- 5. O'Neil, M. W., and Reese, L. C. (1999). "Drilled shafts: Construction procedures and design methods," FHWA, Publication No. FHWA-IF-95-025.
- 6. Salgado, R., and Randolph, M. F. (2001). "Analysis of Cavity Expansion in Sand," *International Journal of Geomechanics,* ASCE, 1(2), 175-192.
- 7. Thiyyakkandi, S., McVay, M., Bloomquist, D., and Lai P. (2013), "Measured and Predicted Response of a New Jetted and Grouted Precast Pile with Membranes in Cohesionless Soils," *Journal of Geotechnical and Geoenvironmental Engineering*, 139 (8), 1334-1345.
- 8. Thiyyakkandi, S., McVay, M., Bloomquist, D., and Lai P. (2013), "Experimental Study, Numerical Modeling of and Axial Prediction Approach to Base Grouted Drilled Shafts in Cohesionless Soils" *Acta Geotechnica,* Springer, DOI: 10.1007/s11440-013-0246-3.
- 9. Yu, H. S., and Houlsby, G.T. (1991). "Finite Cavity Expansion in Dilatant Soils Loading Analysis," *Geotechnique*, 41(2), 173-183.

