

Soil Mixing Design Methods and Construction Techniques for Use in High Organic Soils

GRIP 2013 Presented by: Danny Winters, P.E. UNIVERSITY OF SOUTH FLORIDA.

Civil & Environmental Engineering

Problem Statement

- Organic soils are problematic for roadway construction; typically, the material is replaced, modified, or bridged.
- Insitu soil mixing is one method that can be used to stabilize the material but the low pH necessitates high binder content and promotes unwanted variability in the resulting strength.

Project Overview

- Existing Soil Mixing Methods
- Case Histories with Long-Term Performance
- Various Binder Materials
- Techniques for New and Existing Roadways
- Lab / Field Tests to Evaluate Long Term Performance
- Cost Evaluation
- Guidelines for Soil Mixing

Research Approach

- Task 1 Literature Review
- Task 2 Laboratory Testing
- Task 3 Field Testing and Exploration
- Task 4 Cost Evaluation / Guidelines and Recommendations
- Task 5 Reporting

Research Approach

Task 1 Literature Review

- Task 2 Laboratory Testing
- Task 3 Field Testing and Exploration
- Task 4 Cost Evaluation / Guidelines and Recommendations
- Task 5 Reporting

FDOT Soils and Foundations Handbook Section 8.4.1.3

- 1. Reduce fill height
- 2. Provide waiting period to allow for majority of consolidation to occur
- 3. Increase surcharge height
- 4. Use a lightweight fill
- 5. Install wick drains within the compressible material to be surcharged
- 6. Excavate soft compressible material and backfill with granular soil
- 7. Ground modification such as stone columns, dynamic compaction, etc.
- 8. Deep soil mixing
- 9. Combinations of some of the above

Wet Soil Mixing

Dry Soil Mixing

Research Approach

Task 1 Literature Review

- Task 2 Laboratory Testing
- Task 3 Field Testing and Exploration
- Task 4 Cost Evaluation / Guidelines and Recommendations
- Task 5 Reporting

Organic Laboratory Samples

Organic Laboratory Samples

Organic Laboratory Samples

Laboratory Testing

Organic Soil Properties

- Organic Content = 50-65% (ASTM D 2947-00)
- Moisture Content = 260-300% (ASTM D 2974-00)
- pH = 5.5-7 (ASTM D 4972)
- Resistivity = $5 \text{ k}\Omega$ -cm (FM 5-551)
- Chloride Content = 590 ppm (FM 5-552)
- Sulfate Content = 35 ppm (FM 5-553)

Soil Mixing Considerations

- Soil Type
- Organic Content
- Moisture Content
 - Dry or Wet Mixing
- Binder Type
 - Cement, Slag, Fly Ash, Etc.
- Binder Content

- pH of the Soil
 - Low pH detrimental to reactiveness of cement
- pH Modifiers
 - Soda Ash, pot ash, lye, lime, pearl ash, etc
- pH Modifier Content
- Mixer Type
- Mixing Energy

Initial Soil Mixing

- 100 300 pcy Cement
- Dry & Wet Mixing
- Starting Soil pH Range from 6 to 9
 - Soda Ash
- Moisture Content (265 to 450%)
- 4x8 inch Cylinders

Soil Mixing

Unconfined Compression Testing

Soil Mixing Results

7 day Strength

- 350% Moisture Content
- 300 pcy Cement

Dry Mixing Method

Wet Mixing Method

Research Approach

- Task 1 Literature Review
- Task 2 Laboratory Testing
- Task 3 Field Testing and Exploration
- Task 4 Cost Evaluation / Guidelines and Recommendations
- Task 5 Reporting

Case Histories

- District 1: SR 33 North of Polk City
- District 2: SR 100 in Putnam County The Rail and Trail Bike Path
- District 5: SR 46 in Sanford
- District 6: US-1 Jewfish Creek
 - Turnpike: Milepost 284.7 in Lake County

US-1 Jewfish Creek

- Florida Keys 2005
- 18 miles, 40ft Widening, Northbound
- 10-15 ft of Organic Silts
- ◆ 40-60% Organic, 85 650% m.c.
- Dry Soil Mixing
 - 200-300 pcy (75% slag / 25% cement)

Binder Shuttle

20 ft

Dust Control -

MACK

Shuttle Control Panel

Surcharge (2-ft)

Geofabric

24-Ton Tanker

20 ft

Garbin and Mann, 2010

Garbin and Mann, 2010

US-1 Jewfish Creek 2009 Borings

US 1 Jewfish Creek Survey

- Station 1325 to 1350
- 2009 & 2010 Surveys
 - Parsons Brinckerhoff
 - Southbound Shoulder
- May 2013
 - USF
 - Northbound Shoulder
- July 2013
 - North & Southbound Shoulders

State Road 33 Polk City

- 1000ft roadway through Green Swamp
- 70 years of Settlement
- 2006 Boring at the Lowest Section
 - 43 inches of asphalt
 - 5 6ft of Sand & 72ft of organic material (competent bottom not found)

Marco Island Executive Airport

- 2011 Project
- Dry Soil Mixing
 - 400pcy cement
- Silty-Organics
- Survey Taxiway
 - January 2013
 - March 2013

Macro Island Airport Dry Soil Mixing

Research Approach

- Task 1 Literature Review
- Task 2 Laboratory Testing
- Task 3 Field Testing and Exploration
- Task 4 Cost Evaluation / Guidelines and Recommendations
- Task 5 Reporting

FDOT Soils and Foundations Handbook Section 8.4.1.3

- 1. Reduce fill height
- 2. Provide waiting period to allow for majority of consolidation to occur
- 3. Increase surcharge height
- 4. Use a lightweight fill
- 5. Install wick drains within the compressible material to be surcharged
- 6. Excavate soft compressible material and backfill with granular soil
- 7. Ground modification such as stone columns, dynamic compaction, etc.
- 8. Deep soil mixing
- 9. Combinations of some of the above

Guidelines for Soil Mixing

Acceptable

Methods!

- Soil Type?
- Organic Content?
- Soil Strength?
- pH?
- Moisture Content?
- Δ Stress?
- Depth of Formation?
- ???

Future Work

- Soil Mixing
 - Vary Mixing Energy / Type
 - Vary Binder Type (Fly Ash, Slag, etc.)
 - Lower pH Soil
 - pH Modifiers
 - Time Dependency
 - Larger Scale Mixing
- Guidelines
- Long-term Performance Monitoring
- Cost Evaluations

Questions?

