# Bottom Side Grouting of<br/>Drilled Shafts Prior to TipCivil & Coastal<br/>Engineering<br/>Grouting

#### FDOT Contract No.: BDK-75-977-46

Project Managers: Peter Lai, PE Rodrigo Herrera, PE

Principal Investigator: Mike McVay, PhD David Bloomquist, PhD, PE

Primary Researchers: John Schwartz III, MS Sudheesh Thiyyakkandi, PhD





#### **Presentation Overview**

#### Civil & Coastal Engineering

- Previous Research
- FDOT Test Chamber Shot Shaft (3' x 6') Long Shaft (3' x 25') Top-Down Test on Long Shaft (3' x 25')
- FDOT Test Site

Field Shaft (3-1/2' x 25') Top-Down Test on Field Shaft (3-1/2' x 25') Statnamic Test on Field Shaft (3-1/2' x 25')

 Predicted and Measured Capacities Before Grouting After Grouting



### **Previous Research**

#### Civil & Coastal Engineering

- Post Grouted Drilled Shaft Tips (Mullins, 2001 & 2004)
  - No Side Grouting Prior to Tip Grouting
  - Grout Flows along Path of Least Resistance during Tip Grouting
  - No Cavity Expansion during Tip Grouting
  - Did Not Significantly Improve Soil Conditions around Shaft
  - > No Significant Increase in Tip Capacity of Drilled Shaft
- End Bearing Prediction of Post-Grouted Drilled Shaft (No Side Grouting)
  - Mullins, 2006 Method for Tip Grouted Shaft (GP<sub>max</sub>, GPI, & TCM)
  - Thiyyakkandi (2013) Estimates Tip Area and Tip Pressure mobilized tip resistance vs. displacement



### **Previous Research**

#### Civil & Coastal Engineering

- Prestressed Concrete Pile Installation Utilizing Jetting and Pressure Grouting (McVay, 2009)
  - No Side Membrane Initially (Side Grout Ports Only)
  - Grout Followed Path of Least Resistance during Tip Grouting
  - Tested Flexible and Semi-Rigid Membranes
  - Improved Contact Area between Grout and Foundation Element
- Piles Group Efficiencies of Grout-Tipped Drilled Shafts and Jet-Grouted Piles (McVay, 2010)
  - Multiple Grouting Phases using Different Color Grout (Died Grout)
  - Identified Grout Flow during Subsequent Tip Grouting Phases
  - Developed FEM Model and Design Approach for Side Grouted Foundations (K<sub>g</sub> Method)



#### FDOT Test Chamber Design of Side Grouting System

#### Civil & Coastal Engineering

Internal Grout Delivery System For Side Grouting

Impermeable Side Membrane

**Membrane Seals** 

**Tube-Manchette** 



Tip Grout System



## FDOT Test ChamberCivil & CoastalShort Shaft (3' x 6') – FabricationEngineering







#### FDOT Test Chamber Short Shaft (3' x 6') – Construction





#### **FDOT Test Chamber** Short Shaft (3' x 6') – Side Grout

#### **Civil & Coastal** Engineering



**No Upward Grout Flow** 

#### FDOT Test Chamber Short Shaft (3' x 6') – Tip Grout

#### Civil & Coastal Engineering



## FDOT Test ChamberCivil & CoastalLong Shaft (3' x 25') – Shaft CasingEngineering





#### **FDOT Test Chamber** Long Shaft (3' x 25') – Shaft Casing





#### FDOT Test Chamber Long Shaft (3' x 25') – Soil Placement

Test Soil: A-2-4 (Silty Sand – from FDOT Borrow Pit in Lake City, FL)

18 Inch Soil Lifts 8% Moisture Content 50% Relative Density γ ≈ 110 lb/ft<sup>3</sup> & Φ' ≈ 33°

SPT Blow Counts: 3 – 5 at 8 ft Depth 15 – 20 at 25 ft Depth





#### **FDOT Test Chamber** Long Shaft (3' x 25') – Soil Placement



#### FDOT Test Chamber Long Shaft (3' x 25') – Pressure Cell Placement



#### **FDOT Test Chamber** Long Shaft (3' x 25') – Fabrication





## FDOT Test ChamberCivil & CoastalLong Shaft (3' x 25') - ConstructionEngineering







#### FDOT Test Chamber Long Shaft (3' x 25') – Side Grout

#### Civil & Coastal Engineering





#### Pressure Cells at Depth of 21.5' (Middle of Side Grouted Zone)





#### **Civil & Coastal FDOT Test Chamber** Engineering Long Shaft (3' x 25') – Tip Grout (Salgado 2001) (kPa) 100 Depth of Tip Grout Zone = 25' initial Mean Stress Initial Mean Stress, $\sigma_m = (2^* \sigma_h) + \sigma_v$ 150 Da = 20" 40% 60% 80% 100% ≈ 12 psi 200 or 83 kPa 250



5000

10000

Spherical Cavity Limit Pressure, pr (kPa)

15000

20000

300

0.4" Upward Shaft Movement (0.2" Differential Movement with Soil)

#### **Civil & Coastal FDOT Test Chamber** Engineering Long Shaft (3' x 25') – Tip Grout



& 1267 in<sup>2</sup> Tip Area)

### **FDOT Test Chamber** Long Shaft (3' x 25') – Top-Down Test













#### FDOT Test Chamber Long Shaft (3' x 25') – Top-Down Test

#### Civil & Coastal Engineering



### Field Shaft (3-1/2' x 25') – Site Layout Civil & Coastal Engineering



### FDOT Test SiteCivil & CoastalField Shaft (3-1/2' x 25') - Soil LayersEngineering





## FDOT Test SiteCivil & CoastalField Shaft (3-1/2' x 25') - Soil PropertiesEngineering

| Top of Shaft Approximate              | ely 13 Inches a | bove Soil Surface                             |                   |              |                                                                         |                                                                    |                                                           |                                                                          |                                                                          |
|---------------------------------------|-----------------|-----------------------------------------------|-------------------|--------------|-------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|
|                                       |                 | Soil Surface                                  | Soil Layer<br>(#) | Depth (ft)   | Depth to<br>Mid-Point<br>of Soil<br>Layer (ft)                          | Peak<br>Friction<br>Angle, φ <sub>p</sub>                          | Ultimate<br>Friction<br>Angle, φ <sub>u</sub>             | Moist Unit<br>Weight<br>(Ib/ft <sup>3</sup> )                            |                                                                          |
| · · · · · · · · · · · ·               | -               |                                               | 1                 | 0 - 8        | 4                                                                       | 35                                                                 |                                                           | 115                                                                      |                                                                          |
| Above Side Grout                      |                 |                                               | 2                 | 8 - 15       | 11.5                                                                    | 35                                                                 | 1222                                                      | 120                                                                      |                                                                          |
| Zone, Length Above ≈<br>15 (ft)       |                 | Depth to W.T. ≈ 8 (ft)                        | 3                 | 15 - 25      | 20                                                                      | 41.2                                                               | 36.2                                                      | 125                                                                      |                                                                          |
|                                       |                 | Elv. = -8 IL                                  | 4                 | 25 - 40      | 32.5                                                                    | 41.2                                                               | 200                                                       | 130                                                                      |                                                                          |
| × /                                   | Depth t<br>Plat | to Steel Base<br>e ≈ 25 (ft)<br>Elv. = -15 ft | Soil Layer<br>(#) | Depth (ft)   | Vert.<br>Effective<br>Stress, σ <sub>v</sub> '<br>(Ib/ft <sup>2</sup> ) | Vert.<br>Effective<br>Stress, $\sigma_v'$<br>(Ib/in <sup>2</sup> ) | (1) Lateral<br>Earth<br>Pressure<br>Coef., K <sub>0</sub> | Horiz.<br>Effective<br>Stress, σ <sub>h</sub> '<br>(Ib/ft <sup>2</sup> ) | Horiz.<br>Effective<br>Stress, σ <sub>h</sub> '<br>(Ib/in <sup>2</sup> ) |
| Side Grout Zone,                      |                 |                                               | 1                 | 0-8          | 460                                                                     | 3.2                                                                | 0.43                                                      | 196.2                                                                    | 1.4                                                                      |
| Length of Side<br>Membrane ≈ 9.5 (ft) |                 |                                               | 2                 | 8 - 15       | 1122                                                                    | 7.8                                                                | 0.43                                                      | 478.3                                                                    | 3.3                                                                      |
|                                       |                 |                                               | 3                 | 15 - 25      | 1636                                                                    | 11.4                                                               | 0.34                                                      | 558.5                                                                    | 3.9                                                                      |
|                                       |                 |                                               | 4                 | 25 - 40      | 2456                                                                    | 17.1                                                               | 0.34                                                      | 838.3                                                                    | 5.8                                                                      |
|                                       | -/              | Bottom of Shaft                               | (1) Lateral I     | Earth Pressu | ure Coe <mark>ffic</mark> ie                                            | nt (Jaky 196                                                       | iO), K <sub>0</sub> = 1 - s                               | sin(q <sub>P</sub> )                                                     |                                                                          |
| ≈ 6 (in)↑<br>Tip Grout Zone (         | Below Steel Bas | Elv. = -25 ft                                 | 2                 | 7            |                                                                         |                                                                    | <b>UF</b><br>The Found                                    | UNIVERS<br>FLOI                                                          | SITY of<br>RIDA<br>Gator Nation                                          |

Plate), Depth ≈ 25 (ft)

# FDOT Test SiteCivil & CoastalField Shaft (3-1/2' x 25') – Push-InEngineeringPressure CellsImage: Coastal



## FDOT Test SiteCivil & CoastalField Shaft (3-1/2' x 25') - FabricationEngineering







### FDOT Test SiteCivil & CoastalField Shaft (3-1/2' x 25') – ConstructionEngineering





## FDOT Test SiteCivil & CoastalField Shaft (3-1/2' x 25') - GroutingEngineering

#### **Completed Shaft Construction and All Grouting in 2 Weeks!**

- Grout Membrane Seals (24 hr.)
- Grout Side Membrane (4 & 6 Days)
- Grout Tip (13 Days after Shaft Const.)







#### FDOT Test Site Field Shaft (3-1/2' x 25') – Side Grouting





#### FDOT Test Site Field Shaft (3-1/2' x 25') – Tip Grouting



The Foundation for The Gator Nation



## FDOT Test SiteCivil & CoastalField Shaft (3-1/2' x 25') – Top-Down TestEngineering







#### **Civil & Coastal FDOT Test Site** Engineering Field Shaft (3-1/2' x 25') – Top-Down Test



Zone!!!

850 Kips

### FDOT Test Site Field Shaft (3-1/2' x 25') – Top-Down Test Engineering



#### Ungrouted Drilled Shafts Civil & Coastal Predicted Capacity – Skin (Alpha & Beta) Engineering (FHWA/AASHTO, 2007)

| Layer (#) | Soil Type | Depth (ft) | Depth to<br>Mid-Point<br>of Zone, z<br>(ft) | Avg. Cone<br>Tip Resist.,<br>Q <sub>c</sub><br>(ton/ft <sup>2</sup> ) | Vertical<br>Stress, σ <sub>v</sub><br>(lb/ft <sup>2</sup> ) | Undrained<br>Shear<br>Strength,<br>C <sub>u</sub> (kip/ft <sup>2</sup> ) | (1) Alpha<br>Value, α | (2) Unit<br>Side<br>Resistance<br>, f <sub>su1</sub><br>(kip/ft <sup>2</sup> ) | Surface<br>Area (Top<br>8 ft), A <sub>side1</sub><br>(ft <sup>2</sup> ) | Side<br>Resistance<br>(Top 8 ft),<br>(kip) |   |
|-----------|-----------|------------|---------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------|---|
| 1 (       | Clay      | 0-8        | 4                                           | 18.06                                                                 | 460                                                         | 1                                                                        | 0.55                  | 0.55                                                                           | 87.96                                                                   | 48                                         | - |

(1)  $\alpha = 0$  (if z < 5 ft);  $\alpha = 0.55$  (if z > 5 ft);  $\alpha = 0$  (bottom of shaft for 1 diameter length & length of casing)

(2) Ultimated Unit Load Transfer in Side Resistance,  $f_{su} = \alpha^* C_u$ 

| Layer (#) | Soil Type | Depth (ft) | Depth to<br>Mid-Point<br>of Zone, z<br>(ft) | Avg.<br>Uncorrect<br>ed Blow<br>Count (N-<br>Value) | Vertical<br>Effective<br>Stress, σ <sub>v</sub> '<br>(lb/ft <sup>2</sup> ) | (1) Beta<br>Value (β <sub>0</sub> ) | (2)<br>Corrected<br>Beta Value<br>(β) | (3) Unit<br>Side<br>Resistance<br>, f <sub>s</sub><br>(kip/ft <sup>2</sup> ) | Surface<br>Area, A <sub>side</sub><br>(ft <sup>2</sup> ) | Side<br>Resist., qs<br>(kip) |                   |
|-----------|-----------|------------|---------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------|---------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------|------------------------------|-------------------|
| 2         | Sand      | 8 - 15     | 11.5                                        | 5.5                                                 | 1122                                                                       | 1.0422                              | 0.3821                                | 0.43                                                                         | 77                                                       | 33                           | = q <sub>s2</sub> |
| 3         | Sand      | 15 - 25    | 20                                          | 16                                                  | 1636                                                                       | 0.8963                              | 0.8963                                | 1.47                                                                         | 110                                                      | 161                          | = q <sub>s3</sub> |
| 4         | Sand      | 25 - 40    | 32.5                                        | 55                                                  | 2456                                                                       | 0.7304                              | 0.7304                                | 1.79                                                                         | N/A                                                      | N/A                          |                   |

(1)  $\beta_0 = 1.2$  (if z < 5 ft);  $\beta_0 = 1.5 - 0.135V(z)$  (if 5 ft < z < 86 ft);  $\beta_0 = 0.25$  (if z > 86 ft)

(2) Corrected Beta,  $\beta = (N/15)*\beta_0$  (if N < 15)

(3) Unit Side Resistance,  $f_s = \beta^* \sigma_v'$ 

#### Ungrouted Drilled Shafts Predicted Capacity – Skin & Tip (FHWA/AASHTO, 2007)

#### Civil & Coastal Engineering







Back calculated from pile's unit skin friction

#### Side and Tip Grouted Shafts Civil & Coastal Predicted Capacity – PMT Method Engineering (FDOT BDK-545 #31, 2009)

Fully Corrected Pencel Pressuremeter Curve



#### Side and Tip Grouted Shafts Predicted & Measured Capacities

#### Civil & Coastal Engineering

|                                                                                  | Above Side Grouted<br>Zone (Top 15 ft of<br>Shaft) |                             | Along Sic<br>Zone (Bott<br>Sh    | le Grouted<br>com 10 ft of<br>aft) |                                         |                            |                        |
|----------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------|----------------------------------|------------------------------------|-----------------------------------------|----------------------------|------------------------|
|                                                                                  | Unit Side<br>Resistance<br>(ksf)                   | Side<br>Resistance<br>(Kip) | Unit Side<br>Resistance<br>(ksf) | Side<br>Resistance<br>(Kip)        | Total Side<br>Resistance<br>(Kip)       | Tip<br>Resistance<br>(Kip) | Ultimate<br>Load (Kip) |
| Ungrouted Drilled Shaft (Neglect Tip Resist.)                                    | 0.49                                               | 81                          | 1.47                             | 161                                | 243                                     |                            | 243                    |
| Ungrouted Drilled Shaft (Include Tip Resist.)                                    | 0.49                                               | 81                          | 1.47                             | 161                                | 243                                     | 323                        | 566                    |
| Side & Tip Grouted Drilled Shaft, Kg Method                                      | 100                                                | (2222)                      | <mark>4.40</mark>                | 689                                | 770                                     | 4444                       | 1540                   |
| Side & Tip Grouted Drilled Shaft, PMT Method                                     | 1.5553                                             | 177773                      | 4.74                             | 743                                | 824                                     | <del></del>                | 1648                   |
| *Mobilized during Tip Grouting (Max)                                             | 0.53                                               | 87                          | 4.37                             | 684                                | 771                                     | 771                        | 1542                   |
| **Mobilized during Top-Down Test (Max)                                           | 0.52                                               | 86                          | 3.34                             | 523                                | 609                                     | 241                        | 850***                 |
| *Upward Displacement (Top of Shaft) = 0<br>**Downward Displacement (Top of Shaft | .34 Inch (0.<br>) = 0.18 Inc                       | 81% of Sha<br>h (0.43% of   | ft Diamete<br>Shaft Diar         | er)<br>neter)                      | ò i i i i i i i i i i i i i i i i i i i |                            |                        |

\*\*\*Maximum Applied Load during Top-Down Test so Not an Ultimate Load

Quantify the Ultimate Capacity by Performing Statnamic Axial Test (up to 2000 Kips Maximum Load)



#### Civil & Coastal Engineering

### References:

- 1. Mullins, G., Dapp, S., Frederick, I, and Wagner. R. "Post Grouting Drilled Shaft Tips Phase I, *FDOT Final Report*, Dec. 2001, 308 pages.
- Mullins, G., Winters, D., "Post Grouting Drilled Shaft Tips Phase II", *FDOT Final Report*, June 2004, 165 pages.
- 3. O'Neil, M. W., and Reese, L. C. (1999). "Drilled shafts: Construction procedures and design methods," **FHWA, Publication** No. FHWA-IF-95-025.
- 4. Salgado, R., and Randolph, M. F. (2001). "Analysis of Cavity Expansion in Sand," *International Journal of Geomechanics,* ASCE, 1(2), 175-192.
- Thiyyakkandi, S., McVay, M., Bloomquist, D., and Lai P. (2013), "Measured and Predicted Response of a New Jetted and Grouted Precast Pile with Membranes in Cohesionless Soils," *Journal of Geotechnical and Geoenvironmental Engineering*, 139 (8), 1334-1345.
- Thiyyakkandi, S., McVay, M., Bloomquist, D., and Lai P. (2013), "Experimental Study, Numerical Modeling of and Axial Prediction Approach to Base Grouted Drilled Shafts in Cohesionless Soils," *Acta Geotechnica*, DOI 10.1007/s11440-013-0246-3



#### Civil & Coastal Engineering

### Thank You Questions?

TAX ZE SP

12

