UNIT	SECTION	TEST TYPE	METHOD	DESCRIPTION	CONTACT
Bituminous	Binder Lab	Asphalt Binder Testing	AASHTO R 28	Pressure Aging Vessel	Cassady Allen
Bituminous	Binder Lab	Asphalt Binder Testing	AASHTO R 29	Verifying the Performance Grade of Asphalt Binders	Cassady Allen
Bituminous	Binder Lab	Asphalt Binder Testing	AASHTO T 110	Moisture or Volatile Distillates in Bituminous Paving Mixtures	Cassady Allen
Bituminous	Binder Lab	Asphalt Binder Testing	AASHTO T 111	Inorganic Matter or Ash in Bituminous	Cassady Allen
Bituminous	Binder Lab	Asphalt Binder Testing	AASHTO T 201	Kinematic Viscosity of Asphalts	Cassady Allen
Bituminous	Binder Lab	Asphalt Binder Testing	AASHTO T 202 / ASTM D 2171	Absolute Viscosity of Asphalts	Cassady Allen
Bituminous	Binder Lab	Asphalt Binder Testing	AASHTO T 227	Density and Relative Density (Specific Gravity) by Hydrometer Method	Cassady Allen
Bituminous	Binder Lab	Asphalt Binder Testing	AASHTO T 228	Specific Gravity of Semi-Solid Bituminous	Cassady Allen
Bituminous	Binder Lab	Asphalt Binder Testing	AASHTO T 240	Rolling Thin-Film Oven Test (Mass Change)	Cassady Allen
Bituminous	Binder Lab	Asphalt Binder Testing	AASHTO T 313	Bending Beam Rheometer	Cassady Allen
Bituminous	Binder Lab	Asphalt Binder Testing	AASHTO T 315	Determining the Rheological Properties of Asphalt Binder Using a Dynamic Shear Rheometer	Cassady Allen
Bituminous	Binder Lab	Asphalt Binder Testing	AASHTO T 316	Viscosity of Asphalt Binder Using Rotational Viscometer	Cassady Allen
Bituminous	Binder Lab	Asphalt Binder Testing	AASHTO T 350	Multiple Stress Creep Recovery	Cassady Allen
Bituminous	Binder Lab	Asphalt Binder Testing	AASHTO T 44	Solubility of Bituminous Materials	Cassady Allen
Bituminous	Binder Lab	Asphalt Binder Testing	AASHTO T 48	Flash and Fire Points by Cleveland Open Cup	Cassady Allen
Bituminous	Binder Lab	Asphalt Binder Testing	AASHTO T 49	Penetration of Bituminous Materials	Cassady Allen
Bituminous	Binder Lab	Asphalt Binder Testing	AASHTO T 53	Softening Point of Asphalt (Bitumen) and Tar in Ethylene Glycol (Ring-and-Ball)	Cassady Allen
Bituminous	Binder Lab	Asphalt Binder Testing	AASHTO T 72	Saybolt Viscosity	Cassady Allen
Bituminous	Binder Lab	Asphalt Binder Testing	AASHTO T 78	Distillation of Cut-Back Asphaltic (Bituminous) Products	Cassady Allen
Bituminous	Binder Lab	Asphalt Binder Testing	FM 1-T 055	Water in Petroleum Products and Bituminous by Distillation	Cassady Allen
Bituminous	Binder Lab	Asphalt Binder Testing	FM 1-T 059	Testing Emulsified Asphalt	Cassady Allen
Bituminous	Binder Lab	Asphalt Binder Testing	FM 3-D 5404	Recovery of Asphalt from Solution using the Rotavapor Apparatus	Cassady Allen
Bituminous	Binder Lab	Asphalt Binder Testing	FM 5-524	Reflux Extraction of Bitumen from Bituminous Paving Mixtures	Cassady Allen
Bituminous	Binder Lab	Asphalt Binder Testing	FM 5-548	Viscosity of Asphalt Rubber by Rotational (Dip-N-Read) Viscometer	Cassady Allen
Bituminous	Bituminous Mix Lab	Asphalt Mixture Testing	AASHTO R 30	Mixture Conditioning of HMA	Melissa Barrs
Bituminous	Bituminous Mix Lab	Aggregate Testing	AASHTO T 176	Plastic Fines in Aggregate and Soils by Use of the Sand Equivalent Test	Melissa Barrs
Bituminous	Bituminous Mix Lab	Aggregate Testing	AASHTO T 304	Uncompacted Void Content of Fine Aggregate	Melissa Barrs

UNIT	SECTION	TEST TYPE	METHOD	DESCRIPTION	CONTACT
Bituminous	Bituminous Mix Lab	Aggregate Testing	AASHTO T 304	Uncompacted Void Content (Fine Aggregate Angularity)	Melissa Barrs
Bituminous	Bituminous Mix Lab	Asphalt Mixture Testing	AASHTO T 312	Preparing and Determining the Density of Hot-Mix Asphalt (HMA) Specimens by Means of the Superpave Gyratory Compactor	Melissa Barrs
Bituminous	Bituminous Mix Lab	Asphalt Mixture Testing	AASHTO T 324	Hamburg Wheel-Track Testing of compacted Hot-Mix Asphalt	Melissa Barrs
Bituminous	Bituminous Mix Lab	Asphalt Mixture Testing	AASHTO T 340	Rutting Susceptibility of Hot Mix Asphalt Using the Asphalt Pavement Analyzer	Melissa Barrs
Bituminous	Bituminous Mix Lab	Equipment Verification	AASHTO T344	Evaluating Superpave Gyratory Compactor (SGC) Molds	Melissa Barrs
Bituminous	Bituminous Mix Lab	Asphalt Mixture Testing	AASHTO TP 124 (Illinois)	Fracture Potential of Asphalt Mixtures Using the Flexibility Index Test (FIT)	Wayne Rilko
Bituminous	Bituminous Mix Lab	Asphalt Mixture Testing	AASHTO TP 79	Determining the Dynamic Modulus and Flow Number for Het Mix Asphalt Mixtures Using the Asphalt Mixture Performance Tester	Melissa Barrs
Bituminous	Bituminous Mix Lab	Aggregate Testing	ASTM D 4791	Determination of Flat and Elongated Particles	Melissa Barrs
Bituminous	Bituminous Mix Lab	Asphalt Mixture Testing	ASTM D8044 (LSU)	Evaluation of Asphalt Mixture Cracking Resistance Using the Semicircular Bend Test (SCB) at Intermediate Temperatures	Wayne Rilko
Bituminous	Bituminous Mix Lab	Aggregate Sampling	FM 1-T 002	Sampling of Coarse and Fine Aggregate	Melissa Barrs
Bituminous	Bituminous Mix Lab	Aggregate Testing	FM 1-T 011	Total Amount of Material Finer Than No. 200 (0.075 mm) Sieve	Melissa Barrs
Bituminous	Bituminous Mix Lab	Aggregate Testing	FM 1-T 027	Sieve Analysis of Fine and Coarse Aggregate	Melissa Barrs
Bituminous	Bituminous Mix Lab	Asphalt Mixture Testing	FM 1-T 030	Mechanical Analysis of Extracted Aggregate	Melissa Barrs
Bituminous	Bituminous Mix Lab	Aggregate Testing	FM 1-T 084 / AASHTO T84	Specific Gravity and Absorption of Fine Aggregate	Melissa Barrs
Bituminous	Bituminous Mix Lab	Aggregate Testing	FM 1-T 085 / AASHTO T85	Specific Gravity and Absorption of Coarse Aggregate	Melissa Barrs
Bituminous	Bituminous Mix Lab	Asphalt Mixture Testing	FM 1-T 166	Bulk Specific Gravity of Compacted Bituminous Mixtures	Melissa Barrs
Bituminous	Bituminous Mix Lab	Asphalt Sampling	FM 1-T 168	Sampling Bituminous Paving Mixtures	Melissa Barrs
Bituminous	Bituminous Mix Lab	Asphalt Mixture Testing	FM 1-T 209	Maximum Specific Gravity of Asphalt Paving Mixtures	Melissa Barrs
Bituminous	Bituminous Mix Lab	Asphalt Mixture Testing	FM 1-T 245	Resistance to Plastic Flow of Bituminous Mixtures Using Marshall Apparatus	Melissa Barrs
Bituminous	Bituminous Mix Lab	Aggregate Sampling	FM 1-T 248	Reducing Samples of Aggregate to Testing Size	Melissa Barrs
Bituminous	Bituminous Mix Lab	Asphalt Mixture Testing	FM 1-T 283	Resistance of Compacted Bituminous Mixture to Moisture-Induced Damage	Melissa Barrs
Bituminous	Bituminous Mix Lab	Asphalt Mixture Testing	FM 5-508	Laboratory Testing of the Effectiveness of Anti-Strip Additives	Melissa Barrs
Bituminous	Bituminous Mix Lab	Rubber Testing	FM 5-559	Testing of Ground Tire Rubber	Melissa Barrs
Bituminous	Bituminous Mix Lab	Asphalt Mixture Testing	FM 5-563	Asphalt Content from Asphalt Paving Mixtures by the Ignition Method	Melissa Barrs
Bituminous	Bituminous Mix Lab	Asphalt Mixture Testing	FM 5-565	Measurement of Water Permeability of Compacted Asphalt Paving Mixtures	Melissa Barrs
Bituminous	Bituminous Mix Lab	Asphalt Mixture Testing	FM 5-588	Determining the Optimum Asphalt Content of an Open-Graded Friction Course Mixture	Melissa Barrs
Bituminous	Bituminous Mix Lab	Pavement Testing	FM 5-599	Bond Strength of Pavement Layer Interface	Melissa Barrs

UNIT	SECTION	TEST TYPE	METHOD	DESCRIPTION	CONTACT
Bituminous	Bituminous Mix Lab	Asphalt Mixture Testing	Tex-248-F	Overlay Test	Wayne Rilko
Bituminous	Bituminous Mix Lab	Asphalt Mixture Testing	University of Florida	Superpave IDT	Melissa Barrs
Bituminous	Field Operations	Pavement Testing	AASHTO T 343 (ASTM D7113)	Density of In-Place Hot Mix Asphalt (HMA) Pavement Surface Contact Devices	Greg Sholar
Bituminous	Field Operations	Asphalt Binder Testing	AASHTO T 40	Sampling Bituminous Mixtures	David Webb
Bituminous	Field Operations	Pavement Coring	N/A	Core rig for acquiring pavement cores in the field	Melissa Barrs
Bituminous	Field Operations	Pavement Testing	N/A	Field Permeability Test	Melissa Barrs
Bituminous	Field Operations	Pavement Testing	N/A	Measurement of the pavement transverse profile	Greg Sholar
Geotechnical	Aggregate Acceptance	Aggregates	AASHTO T 104	Soundness of Aggregate by Use of Sodium or Magnesium Sulfate (Sodium Soundness)	Mark Gregory, Dan Decker
Geotechnical	Aggregate Acceptance	Aggregates	AASHTO T 112-00	Standard Method of Test for Clay Lumps and Friable Particles in Aggregate	Mark Gregory, Dan Decker
Geotechnical	Aggregate Acceptance	Aggregates	AASHTO T 113-02	Standard Method of Test for Lightweight Pieces in Aggregate	Mark Gregory, Dan Decker
Geotechnical	Aggregate Acceptance	Aggregates	AASHTO T 19 / T 19M-00	Standard Method of Test for Bulk Density ("Unit Weight") and Voids in Aggregate	Mark Gregory, Dan Decker
Geotechnical	Aggregate Acceptance	Aggregates	AASHTO T 21	Organic Impurities in Sands for Concrete (Colormetric)	Mark Gregory, Dan Decker
Geotechnical	Aggregate Acceptance	Aggregates	AASHTO T 255	Total Evaporable Moisture Content of Aggregate by Drying	Mark Gregory, Dan Decker
Geotechnical	Aggregate Acceptance	Aggregates	AASHTO T 27	Sieve Analysis for Fine and Coarse Aggregates	Mark Gregory, Dan Decker
Geotechnical	Aggregate Acceptance	Aggregates	ASTM D 4791	Standard Test Method for Flat Particles, Elongated Particles, or Flat and Elongated Particles in Coarse Aggregate	Mark Gregory, Dan Decker
Geotechnical	Aggregate Acceptance	Aggregates	ASTM D 5821	Standard Test Method for Determining the Percentage of Fractured Particles in Coarse Aggregate	Mark Gregory, Dan Decker
Geotechnical	Aggregate Acceptance	Aggregates	FM 1-T 002	Sampling Coarse and Fine Aggregate	Mark Gregory, Dan Decker
Geotechnical	Aggregate Acceptance	Aggregates	FM 1-T 011	Total Amount of Material Finer Than No. 200 Sieve	Mark Gregory, Dan Decker
Geotechnical	Aggregate Acceptance	Aggregates	FM 1-T 019	Bulk Density ("Unit Weight") and Voids in Aggregates	Mark Gregory, Dan Decker
Geotechnical	Aggregate Acceptance	Aggregates	FM 1-T 084	Specific Gravity and Absorption of Fine Aggregate	Mark Gregory, Dan Decker
Geotechnical	Aggregate Acceptance	Aggregates	FM 1-T 085	Specific Gravity and Absorption of Coarse Aggregate	Mark Gregory, Dan Decker
Geotechnical	Aggregate Acceptance	Aggregates	FM 1-T 096	Resistance to Abrasion of Small Size Coarse Aggregate by Use of the Los Angles Machine (L.A. Abrasion)	Mark Gregory, Dan Decker
Geotechnical	Aggregate Acceptance	Aggregates	FM 1-T 248	Reducing Samples of Aggregate to Testing Size	Mark Gregory, Dan Decker
Geotechnical	Aggregate Acceptance	Aggregates	FM 3-C 535	Resistance to Degradation of Large-Size Coarse Aggregate by Abrasion and Impact In the Los Angles Machine (L.A. Abrasion for Rip Rap)	Mark Gregory, Dan Decker
Geotechnical	Aggregate Acceptance	Aggregates	FM 5-510	Florida Method of Test for Determination of Acid Insoluble Material Retained on the 0.075 mm (No. 200) Mesh Sieve	Mark Gregory, Dan Decker
Geotechnical	Aggregate Acceptance	Aggregates	FM 5-538	Sampling and Testing Rip-Rap Material	Mark Gregory, Dan Decker
Geotechnical	Aggregate Acceptance	Aggregates	FM 5-555	Florida Method of Test for Shell Content of Coarse Aggregate	Mark Gregory, Dan Decker

Geotechnical	Earthwork Operations and Test Pit	Earthwork/Test Pit			
	and restric		AASHTO T 310	Verification of State Nuclear Gauges (Using the Validator Calibration Method)	Willie Henderson
Geotechnical	Earthwork Operations and Test Pit	Earthwork/Test Pit	ASTM D 2922	Density of Soil and Soil-Aggregate In-Place by Nuclear Methods (Shallow Depth)	Willie Henderson
Geotechnical	Earthwork Operations and Test Pit	Earthwork/Test Pit	ASTM D 4429	Field California Bearing Ratio (CBR) Test	Willie Henderson
Geotechnical	Earthwork Operations and Test Pit	Earthwork/Test Pit	ASTM D 6565	Determination of In-Place Moisture Content of Soil by the Time-Domain Reflectometery (TDR) Method	Willie Henderson
Geotechnical	Earthwork Operations and Test Pit	Earthwork/Test Pit	ASTM D 6758	Measuring Stiffness and Apparent Modulus of Soil and Soil-Aggregate In-Place by an Electro- Mechanical Method – Soil Stiffness Gauge	Willie Henderson
Geotechnical	Earthwork Operations and Test Pit	Earthwork/Test Pit	ASTM D 6780	Density of Soil In-Place by Time-Domain Reflectometery (TDR)	Willie Henderson
Geotechnical	Earthwork Operations and Test Pit	Earthwork/Test Pit	FM 5-507	Determination of Moisture Content Using a Calcium Carbide Gas Pressure Vessel – Speedy Moisture	Willie Henderson
Geotechnical	Earthwork Operations and Test Pit	Earthwork/Test Pit	N/A	Test Pit: Dynamic Plate Load Test	Willie Henderson
Geotechnical	Earthwork Operations and Test Pit	Earthwork/Test Pit	N/A	Test Pit: Static Plate Load Test	Willie Henderson
Geotechnical	Earthwork Operations and Test Pit	Earthwork/Test Pit	N/A	Verification of Speedy Test Calibration Equipment	Willie Henderson
Geotechnical	Field Operations	Field Operations	ASTM D 1143	Static Axial Compressive Load Test (Piles/Drilled Shafts)	Jose Hernando
Geotechnical	Field Operations	Field Operations	ASTM D 2573	Field Vane Shear Test (VST) in Cohesive Soil	Jose Hernando
Geotechnical	Field Operations	Field Operations	ASTM D 3441	Mechanical Cone Penetration Test for Soils	Jose Hernando
Geotechnical	Field Operations	Field Operations	ASTM D 3689	Static Axial Tension Load Test (Piles/Drilled Shafts)	Jose Hernando
Geotechnical	Field Operations	Field Operations	ASTM D 4945	High-Strain Dynamic Testing of Piles - Pile Driving Analyzer (PDA)ASTM D 4945	Jose Hernando
Geotechnical	Field Operations	Field Operations	ASTM D 5778	Electronic Friction Cone and Piezocone Penetration Test (CPT) for Soils	Jose Hernando
Geotechnical	Field Operations	Field Operations	ASTM D 5882	Low Strain Integrity Testing of Piles (PIT)	Jose Hernando
Geotechnical	Field Operations	Field Operations	ASTM D 6230	Monitoring of Ground Movement Using Probe-Type Inclinometers – Slope Inclinometers	Jose Hernando
Geotechnical	Field Operations	Field Operations	ASTM D 6431	Direct Current Resistivity Method (ER) for Subsurface Investigation	Jose Hernando
Geotechnical	Field Operations	Field Operations	ASTM D 6635	Flat Plate Dilatometer Test (DMT) for Soils	Jose Hernando
Geotechnical	Field Operations	Field Operations	ASTM D 6760	Crosshole Sonic Logging (CSL) Integrity Testing	Jose Hernando
Geotechnical	Field Operations	Field Operations	N/A	Drilled Shaft Inspection Device (SID)	Jose Hernando
Geotechnical	Field Operations	Field Operations	N/A	Hand Cone Penetration Test for Soils	Jose Hernando
Geotechnical	Field Operations	Field Operations	N/A	PENCEL Pressuremeter Test (PMT) for Soils	Jose Hernando
Geotechnical	Field Operations	Field Operations	N/A	Stress Wave Energy Measurement for SPT Testing Systems – SPT Calibration	Jose Hernando
Geotechnical	Field Operations	Field Operations	N/A	Tiltmeter Measurements for Rotational Movements of The Ground Surface and Structures	Jose Hernando
Geotechnical	Field Operations	Field Operations	N/A	Vibration Monitoring of Ground Surface and Structures	Jose Hernando

UNIT	SECTION	TEST TYPE	METHOD	DESCRIPTION	CONTACT
Geotechnical	Soils	Soils/Foundations	AASHTO T 100	Specific Gravity of Soils	Bill Greenwood
Geotechnical	Soils	Soils/Foundations	AASHTO T 215	Constant Head Permeability Testing of Granular Soils	Bill Greenwood
Geotechnical	Soils	Soils/Foundations	AASHTO T 216	One-Dimensional Consolidation Testing of Soils	Bill Greenwood
Geotechnical	Soils	Soils/Foundations	AASHTO T 265	Laboratory Determination of Moisture Content of Soils	Bill Greenwood
Geotechnical	Soils	Soils/Foundations	AASHTO T 296	Unconsolidated-Undrained (UU) Triaxial Compression Test for Cohesive Soils	Bill Greenwood
Geotechnical	Soils	Soils/Foundations	AASHTO T 307	Resilient Modulus Testing of Soils and Aggregate Materials	Bill Greenwood
Geotechnical	Soils	Soils/Foundations	AASHTO T 88	Particle Size Analysis of Soils	Bill Greenwood
Geotechnical	Soils	Soils/Foundations	AASHTO T 89	Liquid Limit (LL) of Soils	Bill Greenwood
Geotechnical	Soils	Soils/Foundations	AASHTO T 90	Plastic Limit (PL) and Plasticity Index (PI) of Soils	Bill Greenwood
Geotechnical	Soils	Soils/Foundations	ASTM D 2938	Unconfined Compressive Strength of Intact Rock Core Specimens	Bill Greenwood
Geotechnical	Soils	Soils/Foundations	ASTM D 3967	Splitting Tensile Strength of Intact Rock Core Specimens	Bill Greenwood
Geotechnical	Soils	Soils/Foundations	ASTM D 4186	One-Dimensional Consolidation Properties of Soils Using Controlled-Strain Loading (CRS)	Bill Greenwood
Geotechnical	Soils	Soils/Foundations	ASTM D 4253	Determination of the Maximum Index Density and Unit Weight of Soils Using a Vibratory Table	Bill Greenwood
Geotechnical	Soils	Soils/Foundations	ASTM D 4254	Determination of the Minimum Index Density and Unit Weight of Soils and Calculation of Relative Density	Bill Greenwood
Geotechnical	Soils	Soils/Foundations	ASTM D 4491	Water Permeability of Geotextiles by Permittivity	Bill Greenwood
Geotechnical	Soils	Soils/Foundations	ASTM D 4546	One-Dimensional Swell of Cohesive Soils	Bill Greenwood
Geotechnical	Soils	Soils/Foundations	ASTM D 4643	Laboratory Determination of Moisture Content of Granular Soils by Use of a Microwave Oven	Bill Greenwood
Geotechnical	Soils	Soils/Foundations	ASTM D 4648	Laboratory Miniature Vane Shear Test for Saturated Fine-Grained Clayey Soil	Bill Greenwood
Geotechnical	Soils	Soils/Foundations	ASTM D 4767	Consolidated-Undrained (CU) Triaxial Compression Test for Cohesive Soils	Bill Greenwood
Geotechnical	Soils	Soils/Foundations	ASTM D 5084	Consolidated-Drained (CD) Triaxial Compression Test Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter	Bill Greenwood
Geotechnical	Soils	Soils/Foundations	ASTM D 5101	Measuring the Soil-Geotextile System Clogging Potential by the Gradient Ratio	Bill Greenwood
Geotechnical	Soils	Soils/Foundations	FM 1-T 180	Moisture-Density Relations of Soils Using a 10 lb Rammer and 18 in. Drop (Modified Proctor)	Bill Greenwood
Geotechnical	Soils	Soils/Foundations	FM 1-T 267	Determination of Organic Content in Soils by Loss on Ignition	Bill Greenwood
Geotechnical	Soils	Soils/Foundations	FM 1-T099	Moisture-Density Relations of Soils Using a 5.5 lb Rammer and 12 in. Drop (Standard Proctor)	Bill Greenwood
Geotechnical	Soils	Soils/Foundations	FM 3-D3080	Direct Shear Testing of Soils Under Consolidated Drained Conditions	Bill Greenwood
Geotechnical	Soils	Soils/Foundations	FM 5-513	Coefficient of Permeability - Falling Head Test	Bill Greenwood
Geotechnical	Soils	Soils/Foundations	FM 5-515	Limerock Bearing Ratio (LBR) Test	Bill Greenwood

UNIT	SECTION	TEST TYPE	METHOD	DESCRIPTION	CONTACT
Geotechnical	Soils	Soils/Foundations	FM 5-520	Laboratory Design of Soil-Cement Mixtures	Bill Greenwood
Geotechnical	Soils	Soils/Foundations	N/A	Rotating Erosion Test Apparatus (RETA) Testing for Rock Scour Rate Determination	Bill Greenwood
Pavement	Accelerated Pavement Testing	Heavy Vehicle Simulator/Accelerated Pavement Aging System	N/A	Assessing the performance of new designs, materials, specifications, construction practices, etc. in an accelerated fashion.	Wayne Allick
Pavement	Non-Destructive Testing	Falling Weight Deflectometer	ASTM D 4694	Deflections with a Falling Weight Type Impulse Load Device	Charles Holzschuher
Pavement	Non-Destructive Testing	Non-Contact Ground Penetrating Radar	ASTM D 4748	Determining the Thickness of Bound Pavement layers Using Short-Pulse Radar	Charles Holzschuher
Pavement	Non-Destructive Testing	Ground Coupled Radar	ASTM D 6432	Using the Surface Ground Penetrating Radar Method for Subsurface Investigation	Charles Holzschuher
Pavement	Non-Destructive Testing	Dynamic Cone Penetrometer	ASTM D 6951	Use of the Dynamic Cone Penetrometer in Shallow Pavement Applications	Charles Holzschuher
Pavement	Non-Destructive Testing	Mobile Retroreflectivity Testing	ASTM E 1710	Measurement of Retroreflective Pavement Marking Materials with CEN-Prescribed Geometry	Charles Holzschuher
Pavement	Non-Destructive Testing	Dynamic Friction Tester	ASTM E 1911	Measuring Paved Surface Frictional Properties Using the Dynamic Friction Tester	Charles Holzschuher
Pavement	Non-Destructive Testing	Circular Track Meter	ASTM E 2157	Measuring Pavement Macrotexture Properties Using the Circular Track Meter	Charles Holzschuher
Pavement	Non-Destructive Testing	Roadway Friction Tester	ASTM E 274	Friction Resistance of Paved Surfaces Using a Full Scale Tire	Charles Holzschuher
Pavement	Non-Destructive Testing	Airport Runway Tester	FAA 150, 5320, 12C, ASTM E- 1859-97	Friction Cofficient Measurements Between Tire and Pavement Using a Variable Slip Technique	Charles Holzschuher
Pavement	Non-Destructive Testing	Plate Bearing	FM 5-527, ASTM D 1196	Nonrepetitive Static Plate Load Test of Soils and Flexible Pavement Components	Charles Holzschuher
Pavement	Non-Destructive Testing	Magnetic Imaging Tomography (MIT Scan-2)	N, A	Dowel bar orientation and cover depth of rigid pavements	Charles Holzschuher
Pavement	Pavement Condition Survey	Pavement Condition Survey (Project Level)	FM 5-549, ASTM E 950, E 1926, E 1489, E 867	Project performance monitoring in terms of Ride, Rutting, and Cracking of new or existing pavements.	Thad Bryant
Pavement	Pavement Condition Survey	Pavement Condition Survey (Network Level)	FM 5-549, ASTM E 950, E 1926, E1489, E867	Annual survey and evaluation of the State Highway System in terms of Ride, Rutting, and Cracking.	Stacy Scott
Pavement	Pavement Condition Survey	Rigid Pavement Smoothness Evaluation	FM 5-558, ASTM E 1274	Smoothness evaluation of rigid pavements and bridge decks using a California type profilograph.	Thad Bryant
Pavement	Pavement Condition Survey	Cross-Slope of pavement systems	FM5-611	High Speed Survey of Cross-slope profiles of pavements.	Thad Bryant
Structural	Chemistry Laboratory	Chemical	AASHTO C361	Rubber/Neoprene pipe gaskets Properties	Tijani Abdu
Structural	Chemistry Laboratory	Chemical	AASHTO M144	Standard Specification for Calcium Chrloride	Barbara Beatty
Structural	Chemistry Laboratory	Chemical	AASHTO M181	Chain Link Fence Dimensions	Tijani Abdu
Structural	Chemistry Laboratory	Chemical	AASHTO M247	Standard Specification for Glass Beads Used in Pavement Markings	Tijani Abdu
Structural	Chemistry Laboratory	Chemical	AASHTO T105	Chemical Analysis of Hydraulic Cement	Awilda Merced
Structural	Chemistry Laboratory	Chemical	AASHTO T250	Standard Method of Test for Thermoplastic Traffic Line Material	Tijani Abdu
Structural	Chemistry Laboratory	Chemical	AASHTO T26	Water for Concrete Analysis	Natalia Fitzsimmons
Structural	Chemistry Laboratory	Chemical	ASTM A90	Weight of Coating on Iron and Steel Articles	Tijani Abdu
Structural	Chemistry Laboratory	Chemical	ASTM C114	Chemical Analysis of Hydraulic Cement	Awilda Merced

UNIT	SECTION	TEST TYPE	METHOD	DESCRIPTION	CONTACT
Structural	Chemistry Laboratory	Chemical	ASTM C311	Standard Test Methods for Sampling and Testing Fly Ash or Natural Pozzolans for Use in Portland- Cement Concrete	Awilda Merced
Structural	Chemistry Laboratory	Chemical	ASTM D1155	Roundness of Glass Spheres	Tijani Abdu
Structural	Chemistry Laboratory	Chemical	ASTM D1214	Sieve Analysis of Glass Spheres	Tijani Abdu
Structural	Chemistry Laboratory	Chemical	ASTM D1475	Density of Liquid Coatings, Inks and Related Products	Barbara Beatty
Structural	Chemistry Laboratory	Chemical	ASTM D1640	Drying, Curing or Film Formation of Organic Coatings	Barbara Beatty
Structural	Chemistry Laboratory	Chemical	ASTM D2240	Rubber Property - Durometer Hardness	Tijani Abdu
Structural	Chemistry Laboratory	Environmental	ASTM D2369	Volatile Content of Coatings	Barbara Beatty
Structural	Chemistry Laboratory	Chemical	ASTM D2471	Gel Time and Peak Exothermic Temperature Resins	Tijani Abdu
Structural	Chemistry Laboratory	Chemical	ASTM D2621	Infrared ID Vehicle Solids from Solvent Paints	Barbara Beatty
Structural	Chemistry Laboratory	Chemical	ASTM D3723	Pigment Content of Water-Emulsion Paints by Low-Temperature Ashing	Barbara Beatty
Structural	Chemistry Laboratory	Environmental	ASTM D3960	Volatile Organic Compound (VOC) Content of Paints and Related Coatings	Barbara Beatty
Structural	Chemistry Laboratory	Chemical	ASTM D4280	Retroreflective Raised Pavement Markers	Ron Aparicio
Structural	Chemistry Laboratory	Chemical	ASTM D4587	Accelerated Exposures of Paint and Related Coatings	Mark Conley
Structural	Chemistry Laboratory	Chemical	ASTM D4956	Retroreflective Sheeting for Traffic Control	Ron Aparicio
Structural	Chemistry Laboratory	Chemical	ASTM D512	Chloride in Water by Silver Nitrate titration	Natalia Fitzsimmons
Structural	Chemistry Laboratory	Chemical	ASTM D516	Sulfate in water by Turbidimetric Method	Natalia Fitzsimmons
Structural	Chemistry Laboratory	Chemical	ASTM D523	Specular Gloss of Non-Metallic Specimens	Tijani Abdu
Structural	Chemistry Laboratory	Chemical	ASTM D5329	Sealants for Joints/Cracks in Asphalt/Cement Pave	Tijani Abdu
Structural	Chemistry Laboratory	Chemical	ASTM D562	Consistency of Paints Measuring Krebs Unit (KU) Viscosity Using a Stormer-Type Viscometer	Barbara Beatty
Structural	Chemistry Laboratory	Environmental	ASTM D6919	Cations by Ion Chromatography	Natalia Fitzsimmons
Structural	Chemistry Laboratory	Chemical	ASTM D711	No-Pick-Up Time of Traffic Paint	Barbara Beatty
Structural	Chemistry Laboratory	Chemical	ASTM E376	Zinc Coating thickness by Eddy-Current method	Tijani Abdu
Structural	Chemistry Laboratory	Chemical	ASTM E77	Liquid Thermometer Calibration Verification	Tijani Abdu
Structural	Chemistry Laboratory	Chemical	FM 5-510	Acid Insoluble Analysis	Natalia Fitzsimmons
Structural	Chemistry Laboratory	Chemical	FM 5-514	% Carbonates in Limerock	Natalia Fitzsimmons
Structural	Chemistry Laboratory	Chemical	FM 5-518	Wet Bond Strength of Epoxy Mortars/to Concrete	Richard DeLorenzo
Structural	Chemistry Laboratory	Chemical	FM 5-523	Refractive index of glass beads	Tijani Abdu

UNIT	SECTION	TEST TYPE	METHOD	DESCRIPTION	CONTACT
Structural	Chemistry Laboratory	Chemical	FM 5-541	Traffic Striping Field Testing	Tijani Abdu
Structural	Chemistry Laboratory	Chemical	FM 5-547	Field Sampling of Granular Thermoplastic	Tijani Abdu
Structural	Chemistry Laboratory	Chemical	FM 5-557	Recycled Plastic Fence Posts Testing	Paul Vinik
Structural	Chemistry Laboratory	Chemical	FM 5-566	Retroreflective raised pavement markers field and lab testing	Ron Aparicio
Structural	Chemistry Laboratory	Chemical	FM 5-571	Sign Sheeting Materials Field Testing	Ron Aparicio
Structural	Chemistry Laboratory	Chemical	N/A	Inspection of Installed Signs	Ron Aparicio
Structural	Chemistry Laboratory	Environmental	SM 2320 B	Alkalinity - Titration Method	Natalia Fitzsimmons
Structural	Chemistry Laboratory	Environmental	SM 2540 B	Total Solids	Natalia Fitzsimmons
Structural	Chemistry Laboratory	Environmental	SM 3120 B	Metals - Inductively Coupled Plasma Method	Natalia Fitzsimmons
Structural	Chemistry Laboratory	Environmental	SM 4110 B	Anions by Ion Chromatography	Natalia Fitzsimmons
Structural	Chemistry Laboratory	Environmental	SM 4500 CI B	Chloride - Argentometric Method	Natalia Fitzsimmons
Structural	Chemistry Laboratory	Environmental	SM 4500 H-B	pH Water - Electrometric Method	Natalia Fitzsimmons
Structural	Chemistry Laboratory	Environmental	SM 4500 SO4 E	Sulfate - Turbidemetric Method	Natalia Fitzsimmons
Structural	Corrosion and Materials Durability	Concrete	ASTM C 856	Petrographic analysis of concrete	Ron Simmons
Structural	Corrosion and Materials Durability	Durability	ASTM D 3895	Oxidation Induction Time	Chase Knight
Structural	Corrosion and Materials Durability	Electrical Indicators of Permeability	C 1202	Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration (RCP)	Ron Simmons
Structural	Corrosion and Materials Durability	Corrosion	C 876	Half-Cell Potentials of Uncoated Reinforced Steel in Concrete	Ron Simmons
Structural	Corrosion and Materials Durability	Durability	FM 3 C 1028	Determining the Static Coefficient of Friction of Surface Applied Detectable Warning Surfaces	Ron Simmons
Structural	Corrosion and Materials Durability	Concrete	FM 5-516	Determining Low Levels of Chloride in Concrete and Raw Materials	Ron Simmons
Structural	Corrosion and Materials Durability	Field Environmental	FM 5-550	Determining pH of Soil and Water	Ron Simmons
Structural	Corrosion and Materials Durability	Field Environmental	FM 5-551	Resistivity of Soil and Water	Ron Simmons
Structural	Corrosion and Materials Durability	Field Environmental	FM 5-552	Chlorides in Soil and Water	Ron Simmons
Structural	Corrosion and Materials Durability	Field Environmental	FM 5-553	Sulfate in Soil and Water	Ron Simmons
Structural	Corrosion and Materials Durability	Pipe	FM 5-572, A	Standard Test for Determining Slow Crack Growth Resistance of High Density Polyethylene Pipes, Procedure A (Stress Crack Test for Pipe Linter)	Chase Knight
Structural	Corrosion and Materials Durability	Pipe	FM 5-572, B	Standard Test for Determining Slow Crack Growth Resistance of High Density Polyethylene Pipes, Procedure B (Stress Crack Test for Pipe Liner/Corrugation Junction)	Chase Knight
Structural	Corrosion and Materials Durability	Pipe	FM 5-572, C	Standard Test for Determining Slow Crack Growth Resistance of High Density Polyethylene Pipes, Procedure C (Stress Crack Test for Pipe Longitudinal Profile Features)	Chase Knight
Structural	Corrosion and Materials Durability	Pipe	FM 5-573	Standard Test for Predicting the Crack- Free Service Life of High Density Corrugation polyethylene Pipes	Chase Knight

UNIT	SECTION	TEST TYPE	METHOD	DESCRIPTION	CONTACT
Structural	Corrosion and Materials Durability	Pipe	FM 5-574, A	Predicting the Oxidation Resistance of HDPE Corrugated Pipes – Procedure A	Chase Knight
Structural	Corrosion and Materials Durability	Pipe	FM 5-577	Predicting Long-Term Modulus of HDPE Corrugated Pipes utilizing data obtained from ASTM D2412	Chase Knight
Structural	Corrosion and Materials Durability	Electrical Indicators of Permeability	FM 5-578	Concrete Resistivity as an Electrical Indicator of its Permeability	Ron Simmons
Structural	Corrosion and Materials Durability	Durability	FM 5-589	Bond Strength of Adhesives Used in Retrofit ADA Warning Surface Materials By Direct Tension (Pull-Off)	Ron Simmons
Structural	Corrosion and Materials Durability	Durability	FM 5-594	Wear Resistance of Surface Applied Detectable Warning Surfaces	Ron Simmons
Structural	Corrosion and Materials Durability	Corrosion	G109	Determining the Effects of Chemical Admixtures on the Corrosion of Embedded Steel Reinforcement in Concrete Exposed to Chloride Environments	Ron Simmons
Structural	Corrosion and Materials Durability	Corrosion	N/A	Tombstone Corrosion Sample	Ron Simmons
Structural	Corrosion and Materials Durability	Corrosion	N/A	Field Column Corrosion Sample (testing beyond 5th year, cost per year)	Ron Simmons
Structural	Corrosion and Materials Durability	Durability	N/A	Polymer Tensile Test	Chase Knight
Structural	Corrosion and Materials Durability	Diffusion	NT Build 443	Concrete Hardened: Accelerated Chloride Penetration (Bulk Diffusion)	Ron Simmons
Structural	Corrosion and Materials Durability	Electrical Indicators of Permeability	NT Build 492	Concrete, Mortar and Cement-Based Repair Materials: Chloride Migration Coefficient from Non-Steady- State Migration Experiments (RMT)	Ron Simmons
Structural	Physical Laboratory	Admixture	AASHTO M 154	Standard Specification for Air-Entraining Admixtures for Concrete	Richard DeLorenzo
Structural	Physical Laboratory	Admixture	AASHTO M 194	Standard Specification for Chemical Admixtures for Concrete	Richard DeLorenzo
Structural	Physical Laboratory	Cementitious Materials	AASHTO M 240	Standard Specification for Blended Hydraulic Cement	Alfred Camps, Richard DeLorenzo
Structural	Physical Laboratory	Cementitious Materials	AASHTO M 85	Standard Specification for Portland Cement	Alfred Camps, Richard DeLorenzo
Structural	Physical Laboratory	Admixture	AASHTO T 157	Testing Air-Entraining Admixtures for Concrete	Richard DeLorenzo
Structural	Physical Laboratory	Hardened Concrete	AASHTO T 323	Shear resistance of concrete or grout using the Iowa Shear	Richard DeLorenzo
Structural	Physical Laboratory	Hardened Concrete	AASHTO T 336	Coefficient of Thermal Expansion of hydraulic cement concrete	Dale DeFord, Richard DeLorenzo
Structural	Physical Laboratory	Structural Metals	ASTM A 185	Standard Specification for Steel Welded Wire Reinforcement, Plain, for Concrete	Thomas Frank, Richard DeLorenzo
Structural	Physical Laboratory	Structural Metals	ASTM A 370	Standard Test Methods and Definitions for Mechanical Testing of Steel Products	Thomas Frank, Richard DeLorenzo
Structural	Physical Laboratory	Structural Metals	ASTM A 416	Standard Specification for Steel Strand, Uncoated Seven-Wire for Prestressed Concrete	Thomas Frank, Richard DeLorenzo
Structural	Physical Laboratory	Structural Metals	ASTM A 496	Standard Specification for Steel Wire, Deformed, for Concrete Reinforcement	Thomas Frank, Richard DeLorenzo
Structural	Physical Laboratory	Structural Metals	ASTM A 497	Standard Specification for Steel Welded Wire Reinforcement, Deformed, for Concrete	Thomas Frank, Richard DeLorenzo
Structural	Physical Laboratory	Structural Metals	ASTM A 615	Standard Specification for Deformed and Plain Carbon Steel Bars for Concrete Reinforcement	Thomas Frank, Richard DeLorenzo
Structural	Physical Laboratory	Structural Metals	ASTM A 722	Standard Specification for Uncoated High-Strength Steel Bar for Prestressing Concrete	Thomas Frank, Richard DeLorenzo
Structural	Physical Laboratory	Structural Metals	ASTM A 82	Standard Specification for Steel Wire, Plain, for Concrete Reinforcement	Thomas Frank, Richard DeLorenzo
Structural	Physical Laboratory	Structural Metals	ASTM A 833	Indentation Hardness of Metallic Materials by Comparison Hardness Testers	Thomas Frank, Richard DeLorenzo

UNIT	SECTION	TEST TYPE	METHOD	DESCRIPTION	CONTACT
Structural	Physical Laboratory	Structural Metals	ASTM A 955	Standard Specification for Deformed and Plain Stainless Steel Bars for Concrete Reinforcement	Thomas Frank, Richard DeLorenzo
Structural	Physical Laboratory	Admixture	ASTM C 1017	Standard Specification for Chemical Admixtures for Use in Producing Flowing Concrete	Richard DeLorenzo
Structural	Physical Laboratory	Cementitious Materials	ASTM C 1038	Expansion of Hydraulic Cement Mortar Bars Stored in Water	Alfred Camps, Richard DeLorenzo
Structural	Physical Laboratory	Plastic Concrete	ASTM C 1064	Temperature of Freshly Mixed Portland Cement Concrete	Richard DeLorenzo
Structural	Physical Laboratory	Cementitious Materials	ASTM C 109	Compressive Strength of Hydraulic Cement Mortars	Alfred Camps, Richard DeLorenzo
Structural	Physical Laboratory	Grout, Patch Materials	ASTM C 1107	Standard Specification for Packaged Dry Hydraulic-Cement Grout (Nonshrink)	Richard DeLorenzo
Structural	Physical Laboratory	Hardened Concrete	ASTM C 1231	Standard Practice for Use of Unbonded Caps in Determination of Compressive Strength of Hardened Concrete Cylinders	Richard DeLorenzo
Structural	Physical Laboratory	Plastic Concrete	ASTM C 138	Density (Unit Weight), Yield, and Air Content (Gravimetric) of Concrete	Richard DeLorenzo
Structural	Physical Laboratory	Non-destructive Testing	ASTM C 1383	Measuring the P-Wave Speed and the Thickness of Concrete Plates Using the Impact-Echo (IE) Method	Dale DeFord, Richard DeLorenzo
Structural	Physical Laboratory	Hardened Concrete	ASTM C 1399	Obtaining Average Residual-Strength of Fiber-Reinforced Concrete	Richard DeLorenzo
Structural	Physical Laboratory	Brick and Block	ASTM C 140	Sampling and Testing Concrete Masonry Units and Related Units	Richard DeLorenzo
Structural	Physical Laboratory	Plastic Concrete	ASTM C 143	Slump of Hydraulic Cement Concrete	Richard DeLorenzo
Structural	Physical Laboratory	Grout, Patch Materials	ASTM C 1437	Flow of Hydraulic Cement Mortar	Richard DeLorenzo
Structural	Physical Laboratory	Cementitious Materials	ASTM C 151	Autoclave Expansion of Portland Cement	Alfred Camps, Richard DeLorenzo
Structural	Physical Laboratory	Brick and Block	ASTM C 1552	Capping Concrete Masonry Units, Related Units and Masonry Prisms for Compression Testing	Richard DeLorenzo
Structural	Physical Laboratory	Hardened Concrete	ASTM C 157	Length Change of Hardened Hydraulic-Cement, Mortar, and Concrete	Richard DeLorenzo
Structural	Physical Laboratory	Hardened Concrete	ASTM C 1585	Measurement of Rate of Absorption of Water by Hydraulic Cement Concretes	Richard DeLorenzo
Structural	Physical Laboratory	Cementitious Materials	ASTM C 1702	Thermal Calormetry of Hydraulic Cement using an Isothermal Chamber	Alfred Camps, Richard DeLorenzo
Structural	Physical Laboratory	Plastic Concrete	ASTM C 172	Sampling Freshly Mixed Concrete	Richard DeLorenzo
Structural	Physical Laboratory	Plastic Concrete	ASTM C 173	Air Content of Freshly Mixed Concrete by the Volumetric Method	Richard DeLorenzo
Structural	Physical Laboratory	Hardened Concrete	ASTM C 174	Measuring Thickness of Concrete Elements Using Drilled Concrete Cores	Richard DeLorenzo
Structural	Physical Laboratory	Cementitious Materials	ASTM C 185	Air Content of Hydraulic Cement Mortar	Alfred Camps, Richard DeLorenzo
Structural	Physical Laboratory	Cementitious Materials	ASTM C 187	Normal Consistency of Hydraulic Cement	Alfred Camps, Richard DeLorenzo
Structural	Physical Laboratory	Cementitious Materials	ASTM C 188	Density of Hydraulic Cement	Alfred Camps, Richard DeLorenzo
Structural	Physical Laboratory	Cementitious Materials	ASTM C 191	Time of Setting of Hydraulic Cement by Vicat Needle	Alfred Camps, Richard DeLorenzo
Structural	Physical Laboratory	Plastic Concrete	ASTM C 192	Making and Curing Concrete Test Specimens in the Laboratory	Richard DeLorenzo
Structural	Physical Laboratory	Cementitious Materials	ASTM C 204	Fineness of Hydraulic Cement by Air Permeability Apparatus	Alfred Camps, Richard DeLorenzo

UNIT	SECTION	TEST TYPE	METHOD	DESCRIPTION	CONTACT
Structural	Physical Laboratory	Plastic Concrete	ASTM C 231	Air Content of Freshly Mixed Concrete by the Pressure Method	Richard DeLorenzo
Structural	Physical Laboratory	Plastic Concrete	ASTM C 232	Bleeding of Concrete	Richard DeLorenzo
Structural	Physical Laboratory	Cementitious Materials	ASTM C 266	Time of Setting of Hydraulic Cement by Gillmore Needles	Alfred Camps, Richard DeLorenzo
Structural	Physical Laboratory	Cementitious Materials	ASTM C 305	Mechanical Mixing of Hydraulic Cement Pastes and Mortars of Plastic Consistency	Alfred Camps, Richard DeLorenzo
Structural	Physical Laboratory	Plastic Concrete	ASTM C 31	Standard Practice for Making and Curing Concrete Test Specimens in the Field	Richard DeLorenzo
Structural	Physical Laboratory	Cementitious Materials	ASTM C 311	Sampling and Testing Fly Ash or Natural Pozzolans for Use as a Mineral Admixture in Portland-Cemen Concrete	Alfred Camps, Richard DeLorenzo
Structural	Physical Laboratory	Hardened Concrete	ASTM C 39	Compressive Strength of Cylindrical Concrete Specimens	Richard DeLorenzo
Structural	Physical Laboratory	Plastic Concrete	ASTM C 403	Time of Setting of Concrete Mixtures by Penetration Resistance	Richard DeLorenzo
Structural	Physical Laboratory	Grout, Patch Materials	ASTM C 413	Absorption of Chemical-Resistant Mortars, Grouts, and Monolithic Surfacings and Polymer Concretes	Richard DeLorenzo
Structural	Physical Laboratory	Hardened Concrete	ASTM C 42	Obtaining and Testing Drilled Cores and Sawed Beams of Concrete	Richard DeLorenzo
Structural	Physical Laboratory	Cementitious Materials	ASTM C 430	Fineness of Hydraulic Cement by 45-µm Sieve	Alfred Camps, Richard DeLorenzo
Structural	Physical Laboratory	Hardened Concrete	ASTM C 469	Static Modulus of Elasticity and Poisson's Ratio of Concrete in Compression	Richard DeLorenzo
Structural	Physical Laboratory	Hardened Concrete	ASTM C 495	Compressive Strength of Lightweight Insulating Concrete	Richard DeLorenzo
Structural	Physical Laboratory	Hardened Concrete	ASTM C 496	Splitting Tensile Strength of Cylindrical Concrete Specimens	Richard DeLorenzo
Structural	Physical Laboratory	Hardened Concrete	ASTM C 512	Creep of Concrete in Compression	Richard DeLorenzo
Structural	Physical Laboratory	Grout, Patch Materials	ASTM C 531	Linear Shrinkage and Coefficient of Thermal Expansion of Chemical-Resistant Mortars, Grouts, Monolithic Surfacings, and Polymer Concretes	Richard DeLorenzo
Structural	Physical Laboratory	Cementitious Materials	ASTM C 563	Optimum SO3 in Hydraulic Cement Using 24-h Compressive Strength	Alfred Camps, Richard DeLorenzo
Structural	Physical Laboratory	Grout, Patch Materials	ASTM C 580	Flexural Strength and Modulus of Elasticity of Chemical-Resistant Mortars, Grouts, Monolithic Surfacings, and Polymer Concretes	Richard DeLorenzo
Structural	Physical Laboratory	Non-destructive Testing	ASTM C 597	Measuring the through wave velocity of concrete using the Ultrasonic Pulse Velocity (UPV)	Dale DeFord, Richard DeLorenzo
Structural	Physical Laboratory	Hardened Concrete	ASTM C 617	Standard Practice for Capping Cylindrical Concrete Specimens	Richard DeLorenzo
Structural	Physical Laboratory	Cementitious Materials	ASTM C 618	Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use as a Mineral Admixture in Concrete	Alfred Camps, Richard DeLorenzo
Structural	Physical Laboratory	Hardened Concrete	ASTM C 642	Density, Absorption, and Voids in Hardened Concrete	Richard DeLorenzo
Structural	Physical Laboratory	Brick and Block	ASTM C 67	Sampling and Testing Brick and Structural Clay Tile	Richard DeLorenzo
Structural	Physical Laboratory	Hardened Concrete	ASTM C 684	Making, Accelerated Curing, and Testing Concrete Compression Test Specimens	Richard DeLorenzo
Structural	Physical Laboratory	Hardened Concrete	ASTM C 78	Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading)	Richard DeLorenzo
Structural	Physical Laboratory	Brick and Block	ASTM C 780	Compressive strength of molded masonry mortar cylinders and cubes	Richard DeLorenzo
Structural	Physical Laboratory	Ероху	ASTM C 882	Bond Strength of Epoxy-Resin Systems Used With Concrete By Slant Shear	Richard DeLorenzo

UNIT	SECTION	TEST TYPE	METHOD	DESCRIPTION	CONTACT
Structural	Physical Laboratory	Grout, Patch Materials	ASTM C 928	Standard Specification for Packaged, Dry Rapid-Hardening Cementitious Materials for Concrete Repairs	Richard DeLorenzo
Structural	Physical Laboratory	Grout, Patch Materials	ASTM C 939	Flow of Grout for Preplaced-Aggregate Concrete (Flow Cone Method)	Richard DeLorenzo
Structural	Physical Laboratory	Grout, Patch Materials	ASTM C 940	Expansion and Bleeding of Freshly Mixed Grouts for Preplaced-Aggregate Concrete in the Laboratory	Richard DeLorenzo
Structural	Physical Laboratory	Grout, Patch Materials	ASTM C 953	Time of Setting of Grouts for Preplaced-Aggregate Concrete in the Laboratory	Richard DeLorenzo
Structural	Physical Laboratory	Cementitious Materials	ASTM C 989	Standard Specification for Ground Granulated Blast-Furnace Slag for Use in Concrete and Mortars	Alfred Camps, Richard DeLorenzo
Structural	Physical Laboratory	Grout, Patch Materials	ASTM C1090	Measuring Changes in Height of Cylindrical Specimens from Hydraulic-Cement Grout	Richard DeLorenzo
Structural	Physical Laboratory	Grout, Patch Materials	ASTM C942	Compressive Strength of Grouts for Preplaced-Aggregate Concrete in the Laboratory	Richard DeLorenzo
Structural	Physical Laboratory	Curing Compounds	ASTM D 1475	Density of Liquid Coatings, Inks, and Related Products	Alfred Camps, Richard DeLorenzo
Structural	Physical Laboratory	Curing Compounds	ASTM D 1644	Nonvolatile Content of Varnishes	Alfred Camps, Richard DeLorenzo
Structural	Physical Laboratory	Curing Compounds	FM 1-T 155	Water Retention by Concrete Curing Materials	Alfred Camps, Richard DeLorenzo
Structural	Physical Laboratory	Plastic Concrete	FM 5-501	Early Sampling of Fresh Concrete from Revolving Drum Truck Mixers or Agitators	Richard DeLorenzo
Structural	Physical Laboratory	Cementitious Materials	FM 5-506	Sampling Water for Concrete	Alfred Camps, Richard DeLorenzo
Structural	Physical Laboratory	Hardened Concrete	FM 5-530	Weight Per Cubic Foot of Porous Concrete	Richard DeLorenzo
Structural	Physical Laboratory	Ероху	FM 5-568	Anchor System tests for Adhesive-Bonded Anchors and Dowels	Richard DeLorenzo
Structural	Physical Laboratory	Ероху	FM 5-569	Material Properties Identification of Adhesive-Bonded Anchors and Dowels	Richard DeLorenzo
Structural	Physical Laboratory	Qualified Products List (QPL)	N/A	Technical Review of QPL Applications and Supporting Documentation	Richard DeLorenzo
Structural	Physical Laboratory	Structural Metals	N/A	Review of Materail Certifications of Metal products for specification compliance	Thomas Frank, Richard DeLorenzo