

Design of First FRP Reinforced Concrete Bridge in Florida

Halls River Project

Presenters

FDOT District 7 Structures Design Office:

- Elisha Masséus, P.E. Structures Design Engineer
- David Pelham
 Structures Designer & D7 Geotechnical Coordinator
- Cristina Suarez
 Structures Designer

Outline

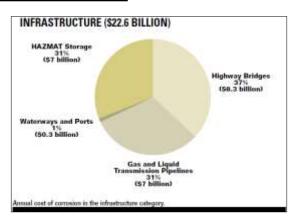
- Introduction
 - Corrosion Issue
 - Fiber Reinforced Polymer (RFP) Reinforcing
 - Prevention Methods
 - References
- Halls River Project
 - Project Overview
 - Construction

Introduction

- Corrosion Issues
- FRP (Fiber Reinforced Polymer) Reinforcing
- Prevention Methods
- References

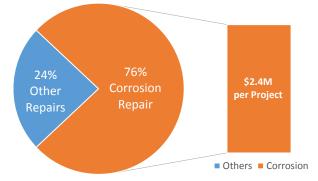
Corrosion Issues

- · Corrosion of steel reinforcing
 - Premature deterioration of concrete structures
 - Reduction in capacity and service life
 - High costs for rehabilitation and/or replacement



Corrosion Costs

Source: "Costs & Preventive Strategies in the U.S.", FHWA/NACE 2002



Corrosion Costs

District 7 (FY 02/03 to Present)

54 Total projects:

- 20 Steel
- · 34 Concrete

Source: FDOT D7 District Structures Maintenance Office (DSMO) & T.Y. Lin

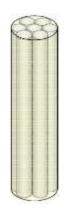
Corrosion Issues

- Concrete Alkalinity:
 - Provides initial corrosion protection for steel bars
 - Reduces in aggressive environments
 - · Highway Deicers
 - Marine/Coastal Environments
 - Contaminated soils (high chloride/sulfate concentration)
- Concrete Cracks:
 - Due to shrinkage, creep, temperature, settlement, etc.
 - Localized corrosion (where crack intersects rebar)

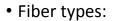
Prevention Methods

- Existing Concrete Structures
 - · Pile Jacket
 - FRP Wrapping
 - Cathodic Protection
- New Concrete Structures
 - Adequate Concrete Cover
 - Concrete Quality
 - Corrosion Inhibiting Admixtures
 - Prefabricated FRP beam: Hybrid Composite Beam
 - Alternative Reinforcements

- Galvanized
- ECR
- Z-bar
- Stainless
- Epoxy
- FRP


FRP Reinforcing

- FRP Bar: Fiber-Reinforced Polymer rebar
- Rebar made of fibers embedded in polymeric resin
 - Superior to either component alone
 - Each component retains its own chemical and physical properties



- Fibers purpose:
 - Strength
 - Stiffness
 - Toughness
 - Durability
- Resin purpose:
 - Holds fibers together
 - Protects fibers from environment/abrasion
 - Transfers load between fibers (shear)

FRP Reinforcing

✓ Glass

Preferred choice for RC applications:

- Balance between cost and strength
- Carbon Aramid
- Basalt

Resin (Thermoset) types:

✓ Vinyl ester

Preferred choice for RC applications:

- Good alkali resistance Polyester
- Good adhesion to concrete Epoxy

Advantages:

- Corrosion Resistant
- High Strength
- Lightweight
- Fatigue Endurance
 - Aramid FRP bars susceptible to fatigue
- Nonmagnetic
- Low Thermal and Electrical Conductivity

FRP Reinforcing

Main Disadvantages:

- High initial cost
- Brittle failure

Design Considerations:

- Low shear strength relative to tensile strength
- · Low modulus of elasticity
- · Creep under sustained loading
- Elevated Temperature
- Moisture
- Ultra-Violet Radiation

FRP Reinforcing

Factors Affecting Material Properties:

- Fiber type
- Fiber volume ratio
- Fiber orientation
- Manufacturing process and quality control
- Rate of resin curing
- Temperature
- Void content

Bar size designation		Nominal		
Standard	Metric conversion	diameter, in. (mm)	Area, in.2 (mm2)	
No. 2	No. 6	0.250 (6.4)	0.05 (31.6)	
No. 3	No. 10	0.375 (9.5)	0.11 (71)	
No. 4	No. 13	0.500 (12.7)	0.20 (129)	
No. 5	No. 16	0.625 (15.9)	0.31 (199)	
No. 6	No. 19	0.750 (19.1)	0.44 (284)	
No. 7	No. 22	0.875 (22.2)	0.60 (387)	
No. 8	No. 25	1.000 (25.4)	0.79 (510)	
No. 9	No. 29	1.128 (28.7)	1.00 (645)	
No. 10	No. 32	1.270 (32.3)	1.27 (819)	
No. 11	No. 36	1.410 (35.8)	1.56 (1006)	

Source: ACI 440.1R

FRP Reinforcing

Table 3.1—Typical densities of reinforcing bars, lb/ft ³ (g/cm ³)				
Steel	GFRP	CFRP	AFRP	
493.00 (7.90)	77.8 to 131.00 (1.25 to 2.10)	93.3 to 100.00 (1.50 to 1.60)	77.80 to 88.10 (1.25 to 1.40)	

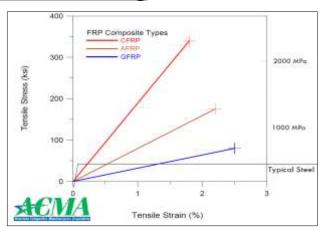
Source: ACI 440.1R

Source: ACI 440.1R

FRP Reinforcing

Table 3.2—Typical coefficients of thermal expansion for reinforcing bars CTE, × 10⁻⁶/°F (× 10⁻⁶/°C) Direction Steel **GFRP** CFRP AFRP 3.3 to 5.6 -3.3 to -1.1 -4.0 to 0.0 Longitudinal, α_I 6.5 (11.7) (6.0 to 10.0) (-9.0 to 0.0)(-6 to -2)11.7 to 12.8 41 to 58 33.3 to 44.4 Transverse, α_T 6.5 (11.7) (21.0 to 23.0) (74.0 to 104.0) (60.0 to 80.0) "Typical values for fiber volume fraction ranging from 0.5 to 0.7.

Source: ACI 440.1R



	Steel	GFRP	CFRP	AFRP
Nominal yield stress, ksi (MPa)	40 to 75 (276 to 517)	N/A	N/A	N/A
Tensile strength, ksi (MPa)	70 to 100 (483 to 690)	70 to 230 (483 to 1600)	87 to 535 (600 to 3690)	250 to 368 (1720 to 2540)
Elastic modulus, ×10 ³ ksi (GPa)	29.0 (200.0)	5.1 to 7.4 (35.0 to 51.0)	15.9 to 84.0 (120.0 to 580.0)	6.0 to 18.2 (41.0 to 125.0)
Yield strain, %	0.14 to 0.25	N/A	N/A	N/A
Rupture strain,	6.0 to 12.0	1.2 to 3.1	0.5 to 1.7	1.9 to 4.4

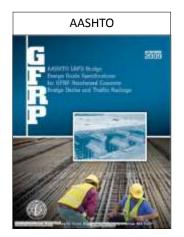
Source: ACI 440.1R

FRP Reinforcing

References

FDOT
FIBER REINFORCED POLYMER

FDOT STRUCTURES MANUAL VOLUME 4 JANUARY 2015


GUIDELINES (FRPG)

ACI

ACI 440.1R-06

Guide for the Design and Construction of Structural Concrete Reinforced with FRP Bars

Reported by ACI Committee 440

References

Developmental Specifications

Dev932FRP

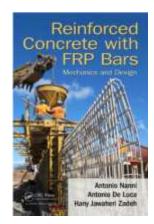
NONMETALLIC ACCESSORY MATERIALS FOR CONCRETE PAVEMENT AND CONCRETE STRUCTURES. (REV 7-16-14)

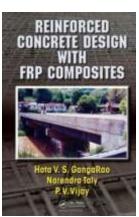
Specifications and Estimated Specifications/
Materials Manual Section 12.1, Volume II

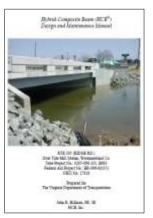
FIBER REINFORCED POLYMER COMPOSITES

Section 12.1, Volume II

Technical Specification Provision for HCB




References


	THERE REPRODUCED FOLLYMER	DOLLERS	SING DETAILS.		
024348	PREF Size Standing Cylinto	Three			
Delfication Salement	Permitted Projects FPID Ne(s): 400021-1; balan		maa titrian		SHITTERS
	*FRERENCORES	DENERS			
022948 Cortilization Significant	Preciatel Constrate OPER GRAP Shoot Pre-Wall	Three Sales	WES 200440	CEL DIZMAD CRPSA CEL DIZMAD CEL DIZMAD CEL DIZMAD	Devices: Devices: Devices: Devices: Devices: Devices:
	Periode Payers FPE Next (40001-1-55-01, 402194-1				
DIZERO Contraren Datument	Plantes and Details Fol Steam CFRF Plantes and Complete Piles Fermines Program FPE has yo 438001-1-53-01	1			
Cortiliumos Samment	Square CFRP Presidenced Cyrunds Pile Spiritor				
	FarmBed Projects FPID htmp: 438023-1-82-01				
022014	M Space CRIT Probesion Concide Ple				
Date and	Psi (1868 Projects PPD Next) 618001-1-53-01				
(1255)4 Certification Statement	(MF Square CHRP Prestreesed Carstrate Pile)				
	Partitled Projects FPG (No.); 439021-1-52-01				

References

Halls River Project

- Project Overview
- Construction

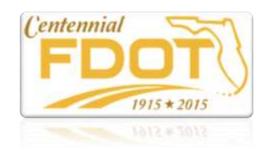
Project Overview

- Collaboration
- Information
- Existing Bridge
- Proposed Bridge
- GFRP, CFCC, and HCB Projects
- Cost Estimates

Project Overview: Collaboration

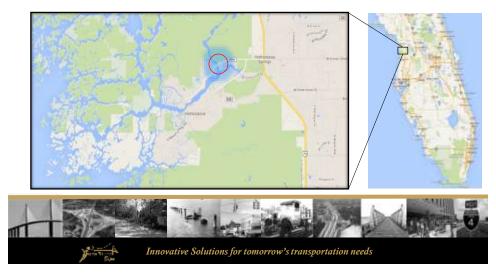
- FDOT Structures Design Office
 - · Steve Nolan, P.E.
 - Tom Waits, P.E.
- FDOT Structures Research Center
 - · Will Potter, P.E.
- FDOT Materials Office
 - Chase Knight, Ph.D.
- University of Miami Composite Research Center
 - Antonio Nanni, Ph.D., P.E.
- HCB inventors
 - · John Hillman, P.E. and Michael Zicko

Project Overview: Information

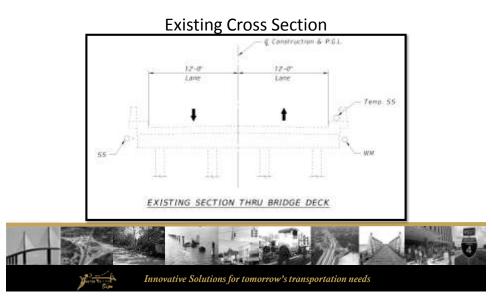

- Category II Structure
 - New bridge using FRP composite materials (1st in Florida)
- FRP Composite Materials
 - Glass FRP reinforcement (deck, bent cap, and bulkhead)
 - Carbon FRP reinforcement (square and sheet concrete piles)
 - Hybrid Composite Beams

Project Overview: Information

- Owner
- Maintaining Agency

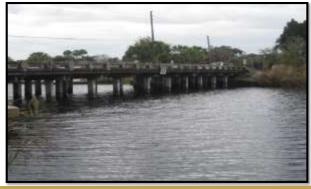


- Bi-Annual Inspection
- Design and Build Proposed Bridge

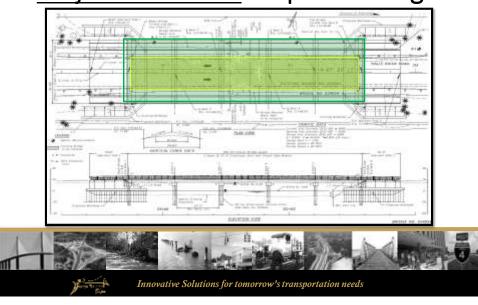


Project Overview: Existing Bridge

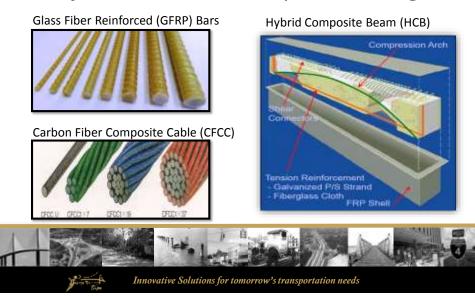
Bridge Location



Project Overview: Existing Bridge

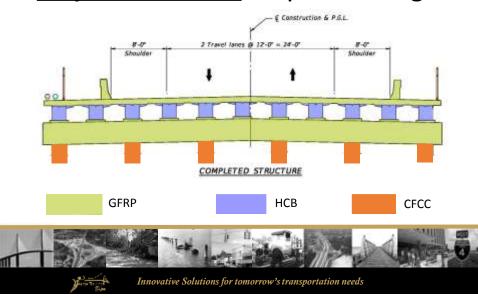

Project Overview: Existing Bridge

Existing Spans Configuration



Project Overview: Proposed Bridge

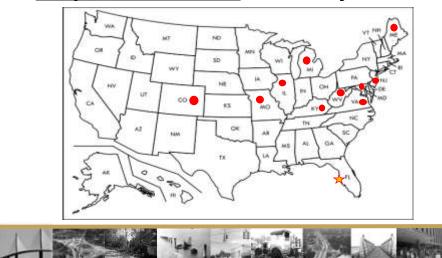
Project Overview: Proposed Bridge



HYBRID COMPOSITE BEAM (HCB)

Project Overview: Proposed Bridge

Project Overview: GFRP Projects



Project Overview: CFCC Projects

Project Overview: HCB Projects

Project Overview: Estimated Cost

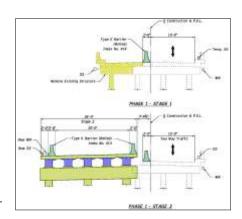
Cost Per Unit Deck Area

Bridge Type	\$/SF
Conventional Concrete Bridge (PSB, Steel Reinforcement)	166.00
Proposed Composite Bridge (HCB, FRP Reinforcement)	282.00

Construction

- Halls River Bridge: Phase Construction
- CFCC Piles
- Hybrid Composite Beam (HCB)
- FRP Bars
 - Handling and Storage
 - Placement and Assembly

Construction: Phase Construction


Phase 1 Sequence

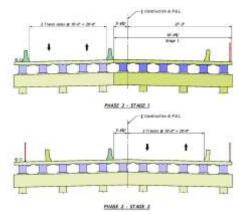
Stage 1:

- Setup traffic (1 lane-2 way) and install Type K Barrier.
- Relocate Sewer Line to temporary location.
- · Remove portion of Existing Bridge.

Stage 2:

- · Construct Phase 1 of New Bridge.
- Install new Water and Sewer Lines in permanent location.
- Install Type K Barriers for Phase 2 Traffic.

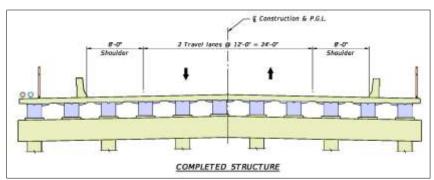
Construction: Phase Construction

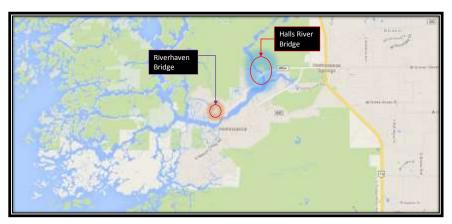

Phase 2 Sequence

Stage 1:

- Shift traffic to Phase 1 of new Bridge (2 lane-2way).
- Construct Phase 2 of New Bridge with Traffic Railing and Pedestrian Railing.

Stage 2:


- Shift traffic to Phase 2 of new Bridge (2 lane-2way).
- Construct Traffic Railing and Pedestrian Railing on Phase 1 portion of new Bridge.


Construction: Phase Construction

Final Configuration

Construction: Phase Construction

Construction: Phase Construction

Riverhaven Bridge: Construction Phasing

Construction: Phase Construction

Riverhaven Bridge: Utility Accommodation

Construction: CFCC Piles

- FDOT Research:
 - Field Testing:
 - Installation and Behavior.
 - Lab Testing
 - · Material and Capacity.
- Pile Production
 - Similar to conventional piles.
 - · Handling of CFCC strands to prevent damage.
- Installation
 - Driving method and behavior similar to conventional piles.
 - Research found strength and capacity similar to conventional piles.

Construction: HCB

- Lightweight:
 - 33% less weight than standard concrete beam (includes concrete fill).
 - 80% less concrete than standard concrete beam.
 - 75%-80% fewer trucks required for shipping.
 - Smaller cranes for placement.
 - > Accelerated beam installation.

Construction: HCB

- Fabrication
 - Current Locations:
 - ➤ Maine
 - > Texas
 - New Approved Locations:
 - > North Carolina
 - ➤ South Dakota
 - ➤ Seattle
 - Currently no fabrication plants in Florida.

Construction: HCB

Fabrication

HYBRID COMPOSITE BEAMS

STANDARD CONCRETE BEAMS

Construction: HCB

Handling and Storage

HYBRID COMPOSITE BEAMS

STANDARD CONCRETE BEAMS

Construction: HCB

Transportation

HYBRID COMPOSITE BEAMS (Union Street, ME) 9.0 kips x 4= 36 kips Total 70 ft. beams

PRESTRESSED SLAB BEAMS (Gospel Island, FL) 25 kips x 2 = 50 kips Total 39 ft. beams

Construction: HCB

Installation

HYBRID COMPOSITE BEAMS

STANDARD CONCRETE BEAMS

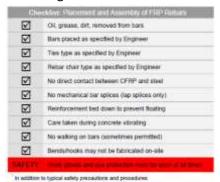
Construction: FRP Bars

- Minimize damage to FRP bars
- Handling, storage, and placement
 - Similar to coated bar (epoxy or galvanized)
- ACI 440.5-08 "Specification for Construction with FRP Bars"

Construction: FRP Bars

Handling & Storage

• FRP bars vulnerable to surface damage



Construction: FRP Bars

Placement & Assembly

• Follow Manufacturers' guidelines

Summary:

- Pilot project
 - Pilot/Experimental project
 - · First of its kind in Florida
 - FDOT Central Office and FHWA oversight
 - · Long-term monitoring
 - FDOT Structures Research Center and State Materials Office
- Use of corrosion resistant materials
 - · Glass FRP rebar
 - Carbon FRP strands
 - Hybrid Composite Beams
- \$3.2M estimated costs

Thank you.

Questions?

