CONSTRUCTION MATH

a training course developed by the

FLORIDA DEPARTMENT OF TRANSPORTATION

This 2002 revision was carried out under the direction of
Douglas Townes, P.E., State Construction Training Engineer
Florida Department of Transportation
Douglas Townes, State Construction Training Engineer
Yvonne Collins, State Construction Training Coordinator

CONSTRUCTION MATH

CONTENTS

Chapter One: BASIC CALCULATING 1-1
Chapter Two: ROUNDING 2-1
QUIZ: CHAPTERS ONE AND TWO 2-14
Chapter Three: SYMBOLS - SQUARES - CUBES - EQUATIONS - FORMULAS 3-1
Chapter Four: UNITS OF MEASUREMENT 4-1
Chapter Five: AVERAGES - PERCENTS - RATIOS - PROPORTIONS 5-1
QUIZ: CHAPTERS THREE, FOUR AND FIVE 5-28
Chapter Six: CALCULATING AREAS 6-1
Chapter Seven: CALCULATING VOLUMES 7-1
Chapter Eight: HIGHWAY PROBLEMS 8-1
Chapter Nine: REVIEW QUIIZ 9-1

DIRECTIONS TO COURSE USERS

INTRODUCTION

This is Construction Math -- a course of training in basic mathematics for highway inspection personnel. It can also be used by materials testing, design and other technical employees.

TRAINING TECHNIQUE

Construction Math has been designed for self-instructional training:

- You can work alone.
- You can make as many mistakes as are necessary for learning -- and correct your own mistakes.
- You can finish the training at your own speed.

Some space has been provided for you to make calculations in this book -- but use a scratch pad too. You will then be able to work faster, make mistakes without a lot of erasing, and make up and solve problems of your own.

You will keep this book as your personal copy, so work neatly any problems you may want to use for reference.

EXAMINATION

An examination has been developed for Construction Math. It contains questions and problems only -- no answers. So that you can prepare yourself properly for that examination, Construction Math contains quizzes and highway problems. If you can handle the quizzes and highway problems in Construction Math, you will have no difficulty with the examination.

INSTRUCTIONS

This is not an ordinary book. You can't read it from page to page as you do other books.
Most chapters begin with STARTING POINTS FOR TRAINING. If you already know how to make certain calculations you will be advised to skip the respective training sections.

The answers to all problems follow their respective chapter
Go on to Chapter One.

CHAPTER ONE

Basic Calculating

CONTENTS

ADDITION 1-4
SUBTRACTION 1-12
CHECKING ADDITION -- SUBTRACTION 1-15
MULTIPLICATION AND DIVISION 1-17
CHECKING MULTIPLICATION AND DIVISION 1-31
HIGHWAY PROBLEMS 1-35
ANSWERS TO PROBLEMS 1-39

BASIC CALCULATING

This chapter has been written to provide a review-- a brief retraining in adding, subtracting, multiplying and dividing. It covers both whole and decimal numbers.

Much of the training involves things you have known before, and probably know now. Other discussions will make clear things you have misunderstood about basic calculations.

Experience with persons who have taken this training indicates that you should review this chapter -- even if you need little practice in the basic calculations.

STARTING POINTS FOR TRAINING

Different persons need to start their training in different places. Work the following problems.

PROBLEMS

1. $503.1 \div 29.25=$ \qquad 2. $1163.4375 \div 42.5=$ \qquad
Right? Work the "HIGHWAY PROBLEMS" on page 1-35. If you have difficulty with those problems, study the appropriate sections in this chapter.

Wrong? Try Problems 3 and 4.
3. $27.5 \times 36.5=$ \qquad 4. $414.5 \times 21.89=$ \qquad

Right? Fine! You can skip to the section titled "DIVIDING WHOLE AND DECIMAL NUMBERS" on page 1-24. If you would rather review "BASIC CALCULATING," scan the earlier sections.

Wrong? Work Problems 5 and 6.
5. $4151-393.5=$ \qquad 6. $51.68-42.9579=$ \qquad
Right? Start with "MULTIPLICATION AND DIVISION" on page 1-17. Review "ADDITION" and "SUBTRACTION" if you like.

Wrong? Try Problems 7 and 8.

7. $2150.5+377.1=$

\qquad 8. $64.54+975.2376=$ \qquad
Right? Start studying "SUBTRACTION," page 1-12. You probably should study "ADDITION" for a quick review.

ADDITION

ADDING WHOLE NUMBERS

You probably will remember everything about adding whole numbers -- but let's see.
Add these numbers: 26, 70, 2 and 36.

PROBLEMS

9. Add the following whole numbers:

$$
3+31+430+27=
$$

\qquad
10. Add the following whole numbers:
$11+273+200+35=$ \qquad

Right? On both problems? Study "ADDING DECIMAL NUMBERS."
Get one wrong -- or both? Study "Discussion on Problems 9 and 10" on the next page.

Discussion on Problems 9 and 10

You made a mistake in Problem 9 or Problem 10 -- or both. Let's look at them in more detail.

- Did you line up your columns from left to right?
- Make sure the right-hand column is straight.
- Make all other columns just as straight.

- Did you get " 11 " when you added 3,1 and 7 ? Did you get " 9 " when you added 1,3 and 5 ? If not you just made a mistake adding. You will learn how to check addition later in this chapter.
- Did you place the right-hand digits in your answer space, and the left-hand digit above the next column? (In the second problem, you only have a right-hand digit. Place a zero up there if you like.)

Discussion on Problems 9 and 10,continued

Add the next column
 Ignore the rest

- Did you get " 9 " when you added 1, 3, 3 and 2? Did you get " 11 " when you added $0,1,7,0$ and 3 ? If not, look at these columns again.
- Did you place the right-hand digits in your new answers below the second columns and use the left-hand digits as carry digits?
- Did you add the third columns? If not, do it now.
$0+4=4$. Place 4 in the answer space.

01	10
3	11
31	273
430	200
27	35
491	519

- Your final work should look like this:

01	10
3	11
31	273
430	200
27	35
91	19

Now, try Problems 11 and 12.

PROBLEMS

11. $17+22+347+9=$ \qquad 12. $151+9+70+2411=$ \qquad
Calculations. Problems 11 and 12

02	11
17	151
22	9
347	70
$+\quad 9$	+2411
395	2641

Right? You knew it all the time?
Wrong? You will find your problem as you go on with the training. Study "ADDING DECIMAL NUMBERS".

ADDING DECIMAL NUMBERS

Adding decimal numbers is the same as adding whole numbers -- except that you have to watch the decimal points. Decimal numbers are lined up by the decimal points. The decimal points must form vertical lines. 103.2, 21.7, 45.6, and 7.5 should be lined up as shown below:

Place the number having the most decimal places at the TOP of the column. Attach zeros to make each number have the same number of decimal places as the top one. If the top number has three decimal places, all numbers should have three decimal places.

PROBLEMS
13. $542.1+127.22+6.345+5842.01=$ \qquad
14. $127.52+87.967+1035.6+0.007=$ \qquad

Right? -- Even the decimal points? Go on to "Carry Digits".
Wrong? -- Study "Discussion on Adding Decimal Numbers".

Carry Digits

Carry digits are used to improve accuracy. Some persons feel they should not use carry digits -- only kids do. Maybe so
-- but the kids make fewer mistakes than most adults.
It doesn't make sense to add a long column of digits and -- in a few seconds -- lose track of the answer.
33
193
241
739
8165
437
21
1238
544 78

Can you add the first and second columns and, after a distraction, remember your carry digit for the third column? Almost no one can. So why not write it down? In the most logical place:

AT THE TOP OF THE NEXT COLUMN OF DIGITS.

- It makes it easier to add long columns.
- You can work faster.
- You can re-add quickly.

Obviously, when adding only a few numbers, you sometimes can work faster without carry digits. Go on to "Discussion on Neatness and Accuracy".

Discussion on Neatness and Accuracy

Calculations should be neat in order to ensure correct answers are reached.
To get the right answers:

- Practice working neatly -- using clearly written digits.
- Line up columns of whole numbers from the right
- Line up columns of decimal numbers by the decimal points.
- Put your answers in the correct places.
- Use lined or cross-section paper to help.

Study "SUBTRACTING WHOLE NUMBERS".

SUBTRACTION

SUBTRACTING WHOLE NUMBERS

You know how to subtract, of course. $9-3=6,10-4=6$ and 15-6 $=9$. Still, some review might help.

Sample problem: 5765-394 = \qquad ?

The solution steps are as follows:
One -- Line up whole numbers from the right.
Two -- Subtract from right to left -- in this case, 4 from 5, 9 from
6,3 from 7 , O from 5 -- and put your answers below each column.

$5765 \quad 16$

Three -- When you can't subtract -- as you can't when you get to the " 9 from 6" change the 6 to 16 . Subtract 9 from 16 and put your answer below the 9 .

616
576
-394
3
---:
---:

Four -- \quad To change a 6 to 16, you have to take the digit "1" from the next digit left -- in this case, the 7. This is known as borrowing digits. Change the 7 to 6 and subtract the 3 .

Five -- Subtract "0" from the 5. All blank spaces are zeros in subtractions and addition.

PROBLEM

15. Make these calculations:

1367-265 = \qquad
1439-749 = \qquad
2315-316 = \qquad
Get them all right? Study "SUBTRACTING DECIMAL NUMBERS".
Get one or more wrong? Did you:

- Work them in your head? If so, set them up and work them longhand.
- Work them longhand? Check your work against the calculations below and find your mistakes.

1367	$\begin{aligned} & 133 \\ & 0813 \\ & 1489 \end{aligned}$	$\begin{aligned} & 1210 \\ & 1 \times 15 \\ & 8 \end{aligned}$
- 265	- 749	- 316
1102	690	1999

NOTE: In the second problem, the 4 was changed to 3 then to 13 . In the third one, the 1 became 0 and then 10, and the 3 became 2 then 12.

SUBTRACTING DECIMAL NUMBERS

Subtracting decimal numbers is the same as subtracting whole numbers -- except that you line up the columns by the decimal points.

Subtract 5.011 from 45.42

One -- Line up the decimal points

Two -- Add zeros

Three -- Subtract as though you were working with whole numbers
16. $29.53-4.1=$ \qquad

PROBLEM

$3.154-0.264=$ \qquad
417.1-17.901 = \qquad

Right? Even on that last one? You can pass any subtraction test.
Study "CHECKING ADDITION - SUBTRACTION".
Wrong? Go back and review.

CHECKING ADDITION - SUBTRACTION

CHECKING ADDITION

All mathematical calculations should be checked for accuracy. Add upwards to check the accuracy of addition. Follow these four steps:

One -- Add downwards first, as usual.

Two -- Draw a line above the problem and erase or cross out the old "carry" digits.

Three -- Add each column of digits upwards to check your answers; put the new "carry" digits at the bottom.

Four -- Compare the original answer with the new answer. If a difference exists between your original answer and the new answer, repeat the addition procedure in Steps 2 and 3 above until the answers match.

CHECKING SUBTRACTION

Add again to check the accuracy of subtraction.
One -- \quad Set up the answer and the subtracted value as a problem in addition, then add.

Subtraction

214.76 Original Value

- 24.10 Subtracted Value
190.66 Answer

Checking by Addition

190.66 Answer

- 24.10 Subtracted Value
214.76 Original Value

Two -- Compare the new answer to the original value. If it matches, your work should be right.

Go on to "MULTIPLICATION AND DIVISION."

MULTIPLICATION AND DIVISION

MULTIPLYING WHOLE AND DECIMAL NUMBERS

Terms and Symbols

Three terms are used in multiplication -- "original value," "multiplier" and "answer."
Four symbols are used to indicate that numbers should be multiplied:

1. The times sign $-\mathrm{x}-\mathrm{-}$ as in 2×3, meaning 2 times 3 .
2. Parentheses -- () -- as in 3(4), meaning 3 times 4 .
3. A dot -- •- as in $2 \cdot 3$ meaning 2 times 3 .
4. Letters placed side-by-side -- LW -- meaning Length times Width.

Alignment

Numbers are lined up from the right for multiplication -- without regard to decimal points.
Use the longer number as the original value, the shorter as the multiplier.

Alignment, continued

941.4×22 becomes | 941.4 |
| ---: |
| $\times \quad 22$ |

No decimal points or zeros are used to change whole numbers into decimal numbers for multiplication.
91.11×0.211 becomes $\begin{array}{r}91.11 \text { Always line up the numbers from the right without regard to decimal points } \\ \times 0.211\end{array}$ (

Steps in Multiplication

The steps in multiplying are presented below. Read each and follow the work done in the example below.

One -- Line up the numbers by the right-hand digits.
Step One
59
x 2.3

Two -- Start with the right-hand digit in the multiplier and multiply each digit in the original value by it. Work from right to left. Insert the necessary "carry digits~ above the digits to the left in the original value as shown:
$3 \times 9=27$. Place the 7 in the answer. Carry the 2.
$3 \times 5=15.15+2=17$. Place the 17 in the answer. Keep your columns straight as shown in the example.

Three -- Repeat Step Two for EACH digit in the multiplier, working from right to left. Insert new "carry digits." $2 \times 9=18$. Place the 8 as shown -- below the 2 and use the 1 as a new carry digit. $2 \times 5=$ 10. And $10+1=11$. Place the 11 as shown.

Four -- Add the two columns -- pretending a zero has been placed as shown. Your answer is 1357.

Five -- Count the decimal places in the original value and the multiplier. In this case, there is one decimal place in the multiplier, none in the original value. Count-off decimal places in the answer equal to those in the original value and multiplier. Place a decimal point left of 7 -- to provide one decimal place in this answer.

Step Three	
2	59
$\times 2.3$	$\times 2.3$
177	177
8	118

Step Four
1
$\frac{8}{59}$
$\times \quad 2.3$
177
118
1357

Step Five
59
x 2.3
177
118
135.7

PROBLEM

17. $22 \times 3.6=$ \qquad

$$
0.46 \times 1.8=
$$

\qquad
Right? Skip to "Discussion on Multiplication".
Wrong? Review again the five steps together with the calculations below:

Step One	Step Two		Step Three		Step Four
3.6	1 3.6 $\times 22$	3.6 $\times 22$	1 3.6 $\times 22$	1 \times 3.6 $\times 22$	3.6 $\times 22$
$\times 22$	+ 22	x 22	x 22	+ 22	x 22
+	2	72	72	72	72
			2	72	72
					792
0.46	$\stackrel{4}{0.46}$	0.46	$\stackrel{4}{0.46}$	0.46	0.46
x 1.8	+ 1.8				
	8	368	368	368	368
			6	46	46
					828

Discussion on Multiplication

Persons who have difficulty multiplying usually make one or more of these mistakes:

1. They set up the problems improperly -- or even carelessly,
2. They multiply one digit by another incorrectly,
3. They add incorrectly, or
4. They place the decimal point improperly.
5. Set Up - As indicated above, select the longer numbers as the original values, the shorter as the multipliers and line up the problems from the right:

$42.13 \times 0.102 \rightarrow 42.13-$ Right digits lined up

$\times 0.102$
Keep putting the decimal points where they belong in the original values and the multipliers -- but line up the numbers by the digits, not the decimal points.
2. Multiplying -The digits that have to be multiplied are shown at the right:

As you can see, $9 \times 9=81,8 \times 8=64$ and $7 \times 7=49$.
As can also be seen, $9 \times 8=72$ and $9 \times 7=63$.
The answers to any multiplied pair of digits can be found in the table.

TABLE OF MULTIPLIED NUMBERS

	9	8	7	6	5	4	3	2	1
9	81	72	63	54	45	36	27	18	9
8		64	56	48	40	32	24	16	8
7			49	42	35	28	21	14	7
6				36	30	24	18	12	6
5					25	20	15	10	5
4						16	12	8	4
3							9	6	3
2								4	2
1									1

3. Adding - Adding the columns in multiplication is the same as in any other work. Just be sure your columns are straight.

0.119
$\times 0.19$
1071
$\frac{119}{2261}$

0.119	$=3$ decimal places
$\times \frac{0.19}{1071}$	$=\frac{2}{5}$ decimal places

There ore 4 digits in the answer -4 digits but you need 5 decim. from the right in the answer.

```
    0.119 = 3 decimal places
    x 0.19 = 2 decimal places
    1071
\underbrace [2619
    4 digits decimal places. So, add a zero to the left.
    4 digits
    0.02261
        5 decimal places
```

Go to "DIVIDING WHOLE AND DECIMAL NUMBERS". If you don't fully understand multiplication, you will get more practice later in this chapter.

DIVIDING WHOLE AND DECIMAL NUMBERS

Terms and Symbols

The terms used in division are "original value", "divider" and "answer".

The symbols used are:

1. The division sign \div as in $2600 \div 26$, meaning twenty-six hundred divided by twenty-six.
2. The fraction signs - and / as in $\frac{2600}{26}$ and $2600 / 26$, each meaning twenty-six hundred divided by
twenty-six.
3. The division box $\sqrt{ }$ as in $\sqrt{2600}$

Steps in Setting Up for Division

The five steps used to set up problems for division are listed below. Each step is presented with an example shown on the right. Study each step and follow the changes made in the examples.

Problem: Divide 5671 by 37.22 .
One -- Place the numbers as shown at the right:
Two -- If there is no decimal point in the divider, skip to Step Four. If there is a decimal point in the divider but none in the original value, place a decimal point to the right of the last digit in the

$3 7 . 2 2 \longdiv { 5 6 7 1 . 0 }$

Three -- Move the decimal point in the divider to the right of the last digit. Move the decimal point in the original value also to the right, by the same number of decimal places as you moved the decimal point in the divider. Attach zeros if necessary places tag-on zeros.
Four -- Place a decimal point in the answer space directly above the decimal point in the original value.

Five -- Add zeros to the original value as needed to obtain required accuracy.

```
37.22. }5671.00
Two Two places and two
places tag-on zeros
```



```
    3722.\longdiv{567100.00}
    Two more zeros for
    accuracy to one
    decimal place.
```


PROBLEM

18. Set up the following problems for division. Place all decimal points in their proper positions and attach zeros as needed to obtain required accuracy. DO NOT DIVIDE.

$\frac{\text { Problem }}{318 \div 49.28=} \quad$	
$235.739 \div 217.8=$	
$78.359 \div 6.02=$	
Required Accuracy	
One decimal place	
$14 \div 2.3=$	
Three decimal places	
Four decimal places	
Two decimal places	

NOTE: When you divide one number by another, the accuracy of your answer depends on how far you carry your answer. If your answer has to be accurate to two decimal places, your calculation must be carried to three decimal places. You can attach zeros to the original value until this happens. This will become clear in the practice work on the following pages.

Dividing -- Six Steps

Dividing is finding out how many times the divider will go into the original value. Dividing involves six steps.
Divide 578 by 9 -- to one decimal place.

One -- Determine whether the divider is equal to or smaller than the first digit in the original value. In this case, 9 is larger than the first digit -- 5 .

Now look at the first two digits. Is the divider equal to or smaller than the first two digits in the original value -- the number 57? It is smaller, of course.

Two -- \quad Since 9 will go into 57 six times, place a 6 in the answer space as shown.
\quad Multiply 6×9 and place your answer as shown.

Three -- Subtract the multiplied value from the first two digits in the original value.
$\begin{array}{ll}\text { Four -- } & \begin{array}{l}\text { Bring the next figure in the original value down and place it to the right of the } \\ \text { remainder. }\end{array} \quad 9 \sqrt{\mathbf{5 7 8 . 0 0}}\end{array}$
Five -- Determine how many times the divider will go into the digit you brought down. In this case, 9 will go into 38 four times. Place a " 4 " in the answer. Multiply 4 $x 9=36$. Place as shown, then subtract. Bring down the 0 .
64.
$9 \sqrt{578.00}$
$-\frac{54}{38}$
$-\frac{36}{2} \downarrow$

Six -- Now 9, will go into "20" two times. So place a 2 in the answer and multiply it times 9. Place the answer 18, as shown and subtract again.

Repeat Step Six until you keep getting the same answer. In this case, you will keep getting the answer "2."

64.22
$9 \sqrt{578.00}$

- 54

38

- 36

20

- -18
$-\frac{18}{2}$

Stop dividing when your answer is as "accurate" as you need it to be -- in this case, one decimal place.

PROBLEM

19. Divide 646 by 8 , to an accuracy of one decimal place.

Divide 5.005 by 0.12 , to an accuracy of two decimal places.

Calculations, Problem 19

If you stopped dividing too soon, turn to page 1-25 and read the Note again.

Dividing with Two - and Three-Digit Dividers

Dividing with two or three digits in the divider is the same as dividing with only one digit -- except that it's more difficult.
$444 \div 33$, to one decimal place:

One -- \quad Set up the problem.

Two -- How many times will 33 go into 44? -- Once. Show 1 in the answer space, multiply 33×1, write it down and subtract.

Three -- Bring down the 4. How many times will 33 go into 114? Try 3. Multiply and subtract again.

Four -- Bring down a 0 . How many times will 33 go into 150 ? About 4 times. (If you have to, try 5 . Since $5 \times 33=165$, and since you can't subtract 165 from 150 , try 4 again.)

Five -- Bring the other 0 down. How many times will 33 go into 180 ? Now try 5 , multiply and subtract.

Regardless of the size of the divider, you have to divide it into the original value.
$33 \sqrt{444.00}$
$\frac{1 .}{\sqrt{444.00}}$
$\frac{-33}{11} \longleftarrow 1 \times 33$
$\frac{13 .}{} \begin{aligned} & 33 \sqrt{444.00} \\ & \frac{-33}{114} \\ & \frac{-99}{15} \longleftarrow\end{aligned} \quad 3 \times 33$
$33 \sqrt{13.45} \begin{array}{r}444.00\end{array}$
-33
114
-99
150
$-132 \longleftarrow 4 \times 33$
180
$-165 \longleftarrow-5 \times 33$
Remainder $=15$

PROBLEM

20. Divide the numbers below. Show all work. Carry all answers to three decimal places.
```
72.46\div0.354=
```

\qquad

```
\(6.3079 \div 1.32=\)
``` \(\qquad\)

Did you get them right? Only a minor mistake or two? Do you know how to divide? If so, study "CHECKING MULTIPLICATION AND DIVISION".

Make several mistakes? Do you have difficulty with division? Go back and review.

\section*{CHECKING MULTIPLICATION AND DIVISION}

\section*{CHECKING MULTIPLICATION}

Divide the answer by the multiplier to check the accuracy of multiplication. Your work checks if your new answer is the original value.

\section*{Multiplication Calculation}
\begin{tabular}{rl}
7.62 & Original value \\
\(\times 43.5\) & Multiplier \\
\hline 3810 & \\
\(\frac{2286}{3048}\) & \\
\hline 331470 & Answer
\end{tabular}

\section*{Checking Calculation}

In the calculations above, 7.62 is multiplied by 43.5. The answer, 331.470, is then divided by the multiplier. The answer obtained by dividing is the same as the original value -- so the multiplication is accurate.

\section*{PROBLEM}
21. Try it yourself. Multiply the following numbers and check your answers by dividing.
\(1.41 \times 2.2=\) \(\qquad\)
\(23.7 \times 0.12=\) \(\qquad\)

Did you get the original values when you divided? Then you know how it's done. Study "CHECKING DIVISION". ~ Did you get different original values? Go back and review.

\section*{CHECKING DIVISION}

Multiply the answer by the divider to check the accuracy of division. Add any remainder. Your new answer should match the original value in the division problem. Study these examples:

Division Calculation

\section*{PROBLEM}
22. Divide the following numbers and check your answers by multiplying.
\(14.513 \div 2.3=\)
\(49.7 \div 7.1=\) \(\qquad\)
Did you get the original values when you divided? If you did, you know how to check your own division. Then go on to "HIGHWAY PROBLEMS" to complete this chapter. If you made mistakes, go back and review.

\section*{HIGHWAY PROBLEMS}

A section on practical highway inspection problems is presented at the end of most chapters. The problems presented in this chapter are concerned with addition, subtraction, multiplication and division of whole and decimal numbers.

Some of the problems require you to "think them through" before making calculations. If you have difficulty remembering particular steps, review the proper sections in this chapter.
23. \(549.3 \mathrm{lbs}+317.6 \mathrm{lbs}+103.7 \mathrm{lbs}+298.6 \mathrm{lbs}+138.7 \mathrm{kbs}=\) \(\qquad\) \(30 \mathrm{lbs}+17 \mathrm{lbs}+20 \mathrm{lbs}+41 \mathrm{lbs}+59 \mathrm{lbs}=\) 320.71 cu. yds. +126.1 cu. yds. +529.37 cu. yds. \(=\) \(\qquad\)
24. Determine the number of miles of project length yet to be gxaded:

Total length of project
\[
\begin{aligned}
& =4.321 \text { miles } \\
& =2.381 \text { miles } \\
& =\quad \quad \quad \mathrm{miles}
\end{aligned}
\]
25. \(2292 \mathrm{~kg}(5,052 \mathrm{lbs}\).) of reinforcing steel were delivered to a job site. 1738 kg (\(3,832 \mathrm{lbs}\).) of reinforcing steel were used in various portland cement concrete structures.
How many lbs. of reinforcing steel should be on hand? \(\qquad\) lbs.

\section*{HIGHWAY PROBLEMS, continued}
26. One truck can haul 10 batches. Each batch weighs \(4,000 \mathrm{lbs}\).

How many lbs. can be hauled in the truck? \(\qquad\) lbs.
27. The data below are from the Bill of Reinforcing Steel and the Reinforcing Bar Table. Use this data to determine the total weight of reinforcing steel required.

First, for each size, multiply the number of pieces required by the lengths. Your answers will be the total lengths needed.

Next, multiply each total length by the weight per foot to arrive at the weights of each size.
Last, add the weights.
O.K.! Fill in the blanks.
\begin{tabular}{|c|c|c|c|c|c||}
\hline Size & Number required & Length & Total Length & Weight per foot & Total item weight \\
\hline 4 & 13 & 42 feet & & 0.668 lbs. & \\
\hline 4 & 19 & 8 feet & & 0.668 lbs. & \\
\hline 5 & 90 & 20 feet & & 1.043 lbs. & \\
\hline
\end{tabular}

Weight \(\qquad\) lbs.

\section*{HIGHWAY PROBLEMS, continued}
28. An application rate for liquid asphalt is determined by dividing the square yards of area covered into the number of gallons of asphalt used. The answer is expressed in 0.01 of a gallon per one square yard.

Example: . \(26 \mathrm{gal} / \mathrm{sq} . \mathrm{yd}\).

NOTE: \(\quad\) The symbol "/" means "per." " 0.26 gals/sq. yd" means 0.26 gallons per square yard".

If 975 gallons of liquid asphalt are used to cover 3,850 square yards -- what is the application rate in gallons/square yard to the nearest 0.01 ? \(\qquad\)

This concludes Chapter One. The calculations taught in this chapter are used repeatedly in all remaining chapters. If you have made a few mistakes, don't worry. Most persons do. Your skill will develop as you practice. If you really don't understand one or more sections in Chapter One, study Chapters Two and Three. Then study Chapter One again, from the beginning -- but let a few days pass first.

\section*{ANSWERS TO PROBLEMS}
\begin{tabular}{ll}
Page & 1-3 \\
1. & 17.2 \\
2. & 27.375 \\
3. & \(1,003.75\) \\
4. & \(9,073.405\) \\
5. & \(3,757.5\) \\
6. & 8.7221 \\
7. & \(2,527.6\) \\
8. & \(1,039.7776\)
\end{tabular}

\section*{Page 1-5 \\ 9. 491 \\ 10. 519}

\section*{Page 1-8 \\ 11. 395 \\ 12. 2,641}

\section*{Page 1-9}
13. 6,517.675
14.

\section*{Page 1-27 \\ 19. 80.75 41.708}

\section*{Page 1-29 \\ 20. 204.689 4.779}

Page 1-30
\begin{tabular}{l}
Page 1-14 \\
\hline 16. 25.43
\end{tabular}
2.89
399.199
\begin{tabular}{l}
Page 1-20 \\
\hline \(17 \quad 792\)
\end{tabular}
0.828

\section*{Page 1-24}
18. \(31800.00 \div 4928\) \(2357.3900 \div 2178\) \(7835.90000 \div 602\)
\(140.000 \div 23\)
21. 3.102
2.844

Page 1-32
22. 6.31
23. \(1,407.9 \mathrm{lbs}\). 167 Ibs. \(976.18 \mathrm{cu} . \mathrm{yds}\).
24. \(\quad 1.94\) miles
25. \(554 \mathrm{~kg}(1,220 \mathrm{lbs}\).

Page 1-33
26. 40,000 lbs.
27. 546' \(\quad 364.728 \mathrm{lbs}\). 152' \(\quad 101.536 \mathrm{lbs}\) 1,800 \(\quad 1,877.4 \mathrm{lbs}\). 2,343.664 lbs.
28. \(\quad 0.25\) gal./sq. yd.

\section*{CHAPTER TWO}

\section*{Rounding}

\section*{CONTENTS}
ROUNDING DECIMAL NUMBERS 2-3
ROUNDING IN A SERIES OF CALCULATIONS 2-6
ROUNDING IN CONSTRUCTION MATH 2-12
ACCURACY 2-12
ANSWERS TO PROBLEMS 2-13
QUIZ ON CHAPTERS ONE AND TWO 2-14
ANSWERS TO QUIZ 2-17

\section*{2}

\section*{ROUNDING}

Numbers are rounded for at least two reasons:
1. To provide a stopping place in calculating -- particularly in dividing some calculations that otherwise would go on indefinitely.
2. To make numbers easier to use -- without sacrificing the degrees of accuracy needed.

To round a decimal number is to reduce the number of digits used.
The number " 21.6666 " can be rounded to three degrees of decimal accuracy or to the nearest whole number -- as follows:
\begin{tabular}{lll}
\begin{tabular}{l}
Original \\
Number
\end{tabular} & \begin{tabular}{l}
Degree of \\
Accuracy
\end{tabular} & \begin{tabular}{l}
Rounded \\
Number
\end{tabular} \\
21.6666 & 0.1 & \(21 . \overline{7}\) \\
21.6666 & 0.01 & \(21.6 \underline{7}\) \\
21.6666 & 0.001 & \(21.66 \underline{7}\) \\
21.6666 & Whole Number & 22
\end{tabular}

The digits following the last digit used are dropped. In the first three examples, the last digit used was increased to 7. The decision to increase or not to increase the last digit used is based on three "RULES FOR ROUNDING DECIMAL NUMBERS."

\section*{ROUNDING DECIMAL NUMBERS}

Rounding is done by following three rules:
Rule One -- Determine the LAST DIGIT TO BE USED -- the last digit needed for accuracy.

If the number 15.528 is to be rounded to two decimal places -- the LAST DIGIT TO BE USED is the "2." The 8 will be dropped.

Rule Two -- If the digit following the last digit to be used is \(0,1,2,3\) or \(4-\) drop it and all that follow it. DO NOT CHANGE the last digit to be used.

The following numbers are rounded to one decimal place:

All are rounded to 5.9 -- the \(0,1,2,3\) and 4 are dropped.
The 9 remains unchanged.

All are rounded to 5.9. The digits in the second, third, fourth and all following decimal places are dropped.

Rule Three -- If the digit following the last digit to be used is \(5,6,7,8\) or 9 -- drop it and all digits that follow it. Add 1 to the last digit to be used.

The following numbers are rounded to one decimal place:

3.456
3.4791
3.49899

All are rounded to 3.5. The digits in the third, fourth, and following decimal places are ignored.

\section*{Summary}

The rules of rounding are diagramed below:

\section*{PROBLEMS}
1. Round the following numbers:
\begin{tabular}{ll}
\(\underline{\text { From }} 997.487\) & \(\frac{\text { To }}{\text { Nearest whole number }=}\) \\
63.7458 & Two decimal places \(=\) \\
92.55 & Nearest whole number \(=\) \\
436.48853 & Three decimal places \(=\) \\
\hline
\end{tabular}
2. Round these numbers to two decimal places:
\(84.375=\) \(\qquad\)
\(9.4656=\) \(\qquad\)
\(321.3849=\) \(\qquad\)
\(0.9993=\) \(\qquad\)
3. Round these numbers to three decimal places:
\(10.7555=\) \(\qquad\)
\(0.019500=\) \(\qquad\)
1.998501 = \(\qquad\)
\(99.9985=\) \(\qquad\)

Get all answers right? Skip to "ROUNDING IN A SERIES OF CALCULATIONS." Mistakes? Go back and review

\section*{ROUNDING IN A SERIES OF CALCULATIONS}

\section*{GENERAL RULE}

When it is necessary to make one or more calculations to obtain a final answer, all preliminary answers should be carried out and rounded to one decimal place more than needed in the final answer.

NOTE: All answers calculated prior to the final answer are called "preliminary answers."
An example of the general rule is shown below -- where the final answer is to be reported in a whole number:
Areas paved: \begin{tabular}{r}
Square Yards \\
Square Yards
\end{tabular}
+ Square Yards

Preliminary answers will be carried out and rounded to 0.1 (tenths).

Final answer will be rounded to a whole number.

Additional examples are provided on the following pages to show how the general rule is applied when calculating final answers to the nearest whole numbers, 0.1 (tenths), 0.01 (hundredths), and 0.001 (thousandths).

\section*{CALCULATING TO THE NEAREST WHOLE NUMBERS}

When final answers must be in whole numbers, all preliminary answers will be carried out and rounded to 0.1 (tenths). Final answers will be rounded to the nearest whole numbers.

\section*{Example when Multiplying}

\(24.2 \times 57.5=1391.50\)
Rounded to: 1392

\section*{PROBLEM}
4. Round the answers in preliminary calculations \(A\) and \(B\), below, to 0.1 (tenths). Round the final answers to the nearest whole number.
\begin{tabular}{rlrl}
A & \(=5.4 \times 27.3\) & \(=\) & 147.42 \\
B & \(=15.6 \times 72.8\) & \(=\) & rounded to: \\
Final Answer & \(=\mathrm{A} \times \mathrm{B}\) & \(=135.68\) & rounded to: \\
\hline
\end{tabular}

Study "CALCULATING TO 0.1 (TENTHS)."

\section*{CALCULATING TO 0.1 (TENTHS)}

When final answers must be in 0.1 , all preliminary answers will be carried out and rounded to 0.01 . Final answers will be rounded to 0.1.

\section*{Example when Multiplying}

\section*{PROBLEM}
5. Round the answers in the preliminary calculations below to 0.01 . Round the final answer 0.1.
\begin{tabular}{rll}
\(A\) & \(=12.34 \times 7.63\) & \(=94.1542\) rounded to: \\
\(B\) & \(=7.15 \times 1.12\) & \(=8.0080\) rounded to: \\
Final Answer & \(=\mathrm{A} \times \mathrm{B}\) & \(=754.1415\) rounded to:
\end{tabular}

Study "CALCULATING TO 0.01 (HUNDREDTHS)."

\section*{CALCULATING TO 0.01 (HUNDREDTHS)}

When final answers must be in 0.01 (hundredths), all preliminary answers must be carried out and rounded to 0.001 (thousandths). Final answers will be rounded to 0.01 (hundredths).

\section*{PROBLEM}
6. Round the answers in preliminary calculations below to 0.001 . Round the final answer to 0.01 .
\begin{tabular}{rlrl}
\(A\) & \(=137.29) 25.16\) & \(=\) & rounded to: \\
B & \(=547.15) 89.28\) & \(=6.1284\) & rounded to: \\
Final Answer & \(=\) AXB & \(=1.123\) & rounded to:
\end{tabular}

Right? Excellent! Skip to "CALCULATING TO 0.001 (THOUSANDTHS)."
Wrong? Go back and review.

\section*{CALCULATING TO 0.001 (THOUSANDTHS)}

When final answers must be in 0.001 (thousandths), all preliminary answers will be carried out and rounded to 0.0001 (ten-thousandths). Final answers will be rounded to 0.001 (thousandths).

\section*{PROBLEM}
7. Round preliminary answers \(A\) and \(B\) to 0.0001 (ten-thousandths). (Enter the last digit used in the spaces provided.) Subtract the rounded answers: A - B = C. Round the final answer to 0.001 (thousandths).
```

    Preliminuly
    Calculation! A
    15.147 92
    -12,39627
        3.051 65
    Round to: 3.051_ = A (Preliminary answer)

```
```

    Prulminary
    Caleulation 3
    10.523 46
    - 8. 227 61
    Round to: 2.195_ = a {Prallirimary arrawer}

```
Firal Coleunation: A - B
 3.051. Enter last elgit here \(=\)
 - 2.195_ from onswers \(A\) and \(B\) obove.
\(\qquad\) C Fi-al answer tefare rourding

Rownded to: \(\qquad\) - Final answet

Right? -- Excellent! Go on to the next page.
Wrong? -- A brief review of this Chapter should clear up any problem.

\section*{ROUNDING IN CONSTRUCTION MATH}

In this course, we will use the rules of rounding set forth in this chapter. In practice, you should follow these same rules unless you are given other instructions.

For \(\mathrm{Pi}(\pi)\), use 3.14 or 3.142 or 3.1416
as required for the desired degree of accuracy.

\section*{ACCURACY}

The need to calculate to 0.1 (tenths), 0.01 (hundredths) or 0.001 (thousandths) depends on the significance of each calculation. In practice, you will learn the accuracy required for specific calculations and situations. If all persons involved in the inspection, payment accounting and auditing functions of the Department use identical practices with regard to rounding and degrees of accuracy, they will get identical answers in all calculations.

\section*{ANSWERS TO PROBLEMS}
\(\frac{\text { Page 2-5 }}{1 . \quad 997}\)
63.75

93
436.489
2. 84.38
9.47
321.38
1.00
3. \(\quad 10.756\)
0.020
1.999
99.999

Page 2-7
\(4 . \quad 147.4\)
1135.7

167402
\(\frac{\text { Page 2-8 }}{5 . \quad 94.15}\)
8.01
754.1

Page 2-9
6. 5.457
6.128
1.12

Page 2-11
7. \(3.0517=A\)
\(2.1959=B\)
0.8558 = C
0.856 = Final answer

\section*{QUIZ ON CHAPTERS ONE AND TWO}

The training covered in Chapters One and Two has been used to develop the quiz below. Only a few actual calculations are required to answer the questions -- but detailed knowledge of terms and procedures is needed.

You should be able to answer 90 percent of the questions correctly without going back. Try it. (The numbers in parentheses represent the numbers of answers to be counted right or wrong in the quiz.)
1. What are the symbols for "add," "subtract," "multiply," and "divide"? List seven symbols:
\(\qquad\) (7)
2. How many decimal places are contained in the number 128.0596
3. If you were to calculate to "thousandths," how many decimal places would you have?
\(\qquad\) (1)
4. Change the whole number 257 to a decimal number containing one decimal place:
\(\qquad\) (1)
5. Check addition accuracy by \(\qquad\)
6. Check subtraction accuracy by \(\qquad\)
7. Check multiplication accuracy by \(\qquad\)

\section*{QUIZ, continued}
8. Check division accuracy by \(\qquad\) (1)
9. Line up the decimal points for addition and
10. Line up the right-hand digits for \(\qquad\) (1)
11. The original value is 0.241 . The multiplier is 0.105 . The answer is " 25305 ."

Place the decimal point: \(\underline{25305}\) (1)
12. The original value is 72.05 . The divider is 7.564 . The answer must be carried to 0.01 (hundredths). Set the problem up and add zeros: \(\qquad\) (1)
13. Round to 0.01 (hundredths): 29.805 \(\qquad\) 4.7749 \(\qquad\) (2)
14. Round to whole numbers: 0.5001 \(\qquad\) 13.499 \(\qquad\) (2)
15. If a final answer is to be rounded to 0.01 (tenths) the preliminary answers must be calculated to and rounded to \(\overline{\text { be calculated to and rounded to }}\) If a final answer is to be rounded to . (2)

\section*{QUIZ, continued}
16. Reinforcement steel is to be calculated to the nearest whole kilogram (pound). Fifteen pieces weigh 3.18 kg (7.02 pounds) each, 47.70 kg (105.30 pounds) total. Nine pieces weigh 2.67 kg (5.89 pounds) each, 24.03 kg (53.01 pounds) total. Should 47.70 (105.30) and 24.03 (53.01) be rounded before adding or after adding? \(\qquad\) If the total weight is 71.7 kg (158.3 lbs .), what should be the final answer? \(\qquad\) (2)
17. Change the numbers below to three-decimal-place numbers: (4)

HOW DID YOU DO?

There are 30 answers in the quiz. If you made more than four mistakes, review the chapters. If you made four or fewer mistakes, go to Chapter Three.

\section*{ANSWERS TO QUIZ}

\section*{Page 2-14}
1. \(\quad+,-, x,(), B,), /\), square root, --
2. 4
3. 3
4. 257.0
5. adding upwards
6. adding subtracted value and answer
7. dividing answer by multiplier

Page 2-16
16. before 72 (158)
17. 41.200
26.000
\(0.040 \quad 0.010\)
.

\section*{Page 2-15}
8. multiplying answer by divider
9. subtraction
10. multiplication
11. 0.025305
12. \(7564 \sqrt{72050.00}\)
13. 29.814 .77
14. \(1 \quad 13\)
15. 0.01 (hundredths)
0.001 (thousandths)

\section*{CHAPTER THREE}

\section*{Symbols - Squares - Cubes - Equations - Formulas}
CONTENTS
STANDARD TERMS, ABBREVIATIONS AND SYMBOLS 3-5
SQUARED AND CUBED NUMBERS 3-9
EQUATIONS 3-11
FORMULAS 3-15
HIGHWAY PROBLEMS 3-20
ANSWERS TO PROBLEMS 3-21

\section*{SYMBOLS - SQUARES - CUBES - EQUATIONS -FORMULAS}

STARTING POINTS FOR TRAINING

\section*{PROBLEM}
1.
\[
\begin{array}{lll}
A=\pi r^{2} & \pi=3.142 & r=2.5 \\
A=\square & \text { Round to 0.01. } & \\
X=\frac{Y^{3}}{Z^{2}} & \mathrm{X}=27.3 & \\
Y^{3}= & \text { Round to 0.1. }
\end{array}
\]
2.

Right? On both? Scan Chapter Four and review the sections you need to review. Then work the "HIGHWAY PROBLEMS" section.

Wrong? Work Problem 3.

\section*{PROBLEM}

The answer to the multiplications and division below is the value of " X ".
3.

Set up as an equation and solve for " X ". Round to 0.01 .
\[
X=(8.35 \times 4.2) \div(5.1 \times 3.2)
\]

Right? Scan "STANDARD TERMS, ABBREVIATIONS AND SYMBOLS" and review "EQUATIONS" if you like. Then start studying "FORMULAS."

Wrong? Study the calculations below -- then work Problem 4.

\section*{Calculations, Problem 3}
```

X=\frac{8.35\times4.2}{5.13\times2}
X = 35.07
X = 2.148 rounded to 2.15

```

\section*{PROBLEM}
4. Solve these problems. Round to 0.01 .
\(13.5^{2}=\)
\(9.03^{2}=\)
\(5.81^{3}=\)
\(20.05^{3}=\)

Right? Start studying "EQUATIONS." Scan "STANDARD TERMS, ABBREVIATIONS AND SYMBOLS" if needed.

Wrong on any of them? Try to get the right answers by checking your work.

\section*{STANDARD TERMS, ABBREVIATIONS AND SYMBOLS}

Abbreviations and symbols are used to simplify mathematical calculations. But terms, abbreviations and symbols should be used with consistency. If individuals use various terms, abbreviations and symbols to mean different things, mistakes are made.

Several symbols already have been used in this course:
\(>\) Letters, such as A, B, C and \(\mathbf{X}\) have been used to represent numbers and values.
\(>\) Signs, such as,,\(+- x\), and \(\div\) have been used to represent calculations.
\(>\) Signs, such as () () and • also have been used to mean "multiply", and \(\frac{A}{B}\) or \(A / B\) to mean "divide".

Many of the customary unit standard terms, abbreviations and symbols used in highway construction are shown on the next page.

\section*{STANDARD TERMS, ABBREVIATIONS AND SYMBOLS}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Term Abbreviation} & Term & Symbol \\
\hline \multirow[t]{3}{*}{Inches Feet Yards} & \multirow[t]{3}{*}{in. or " ft or ' yds.} & \multirow[t]{3}{*}{2 in. or 2" 2 ft . or 2' 5 yds .} & Area & A \\
\hline & & & Volume & V \\
\hline & & & Length & L or I \\
\hline \multirow[t]{2}{*}{Miles Grams} & \multirow[t]{2}{*}{mi. gms.} & \multirow[t]{2}{*}{\begin{tabular}{l}
\[
10 \mathrm{mi} .
\] \\
3.47 gms.
\end{tabular}} & Width & W or w \\
\hline & & & Height & H or h \\
\hline \multirow[t]{4}{*}{Pounds Tons Hours Gallons} & \multirow[t]{4}{*}{Ibs Tns hrs. gals.} & \multirow[t]{4}{*}{\[
\begin{aligned}
& 173.5 \text { lbs. } \\
& 21.4 \text { Tns } \\
& 7.4 \text { hrs. } \\
& 1248.3 \text { gals. }
\end{aligned}
\]} & Diameter & Dia. \\
\hline & & & Circumference & C \\
\hline & & & Radius & R or r \\
\hline & & & & \\
\hline \multirow[t]{2}{*}{Square Inches Square Yards Square Feet Square Miles} & \multirow[t]{2}{*}{\begin{tabular}{l}
sq. in. \\
sq. ft. or S.F. \\
sq. yds. or S.Y. \\
sq. \(\mathbf{m i}\).
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
2 sq. in. \\
7 sq. ft. or 7 S.F \\
5 sq. yds. or 5 S.Y. \\
6 sq. mi.
\end{tabular}} & Percent & \% \\
\hline & & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
NOTE \\
There are two abbreviations each for square feet, square yards, cubic feet and cubic yards.
\end{tabular}}} \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Acres \\
Average \\
Cubic Inches \\
Cubic Feet \\
Cubic Yards
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Ac. \\
Avg. \\
cu. in. \\
cu. ft. or C.F. \\
cu. yds. or C.Y. 9
\end{tabular}} & 3 Ac. & & \\
\hline & & \(8 \mathrm{cu} . \mathrm{ft}\). or 8 C.F. ds. or 9 C.Y. & Other abbrevia Learn to interp abbreviations always use one abbreviations & ften are used of the well. But here for \\
\hline
\end{tabular}

\section*{PROBLEM}
5. A number of terms, symbols and abbreviations are listed in the left-hand column below. For each item in that column, show the term, symbol or abbreviations that can be used. The first one is done for you.
Item \(\quad\) Term Represented \(\quad\) Symbol Abbreviation
1. Yd . \(\qquad\)
2. Percent
3. cubic yard
4. Acre
5. Ton
6. Gallons
7. square yard

\section*{Problem 5. continued}
\begin{tabular}{lllll}
& Item & Term Represented & Symbol & Abbreviation \\
8. & Gal & - & \\
9. & Yard & & & \\
10. & Average & & \\
11. & r & & \\
12. & \({ }^{\circ} \mathrm{F}\) & & \\
13. & H & & \\
14. & Width & & & \\
15. & Pound & & &
\end{tabular}

Right? Sure. Go on to "SQUARED AND CUBED NUMBERS," next page.
Wrong? Fill in the right answers above and memorize as many as you can. Go on to "SQUARED AND CUBED NUMBERS". You will be tested again later in this chapter.

\section*{SQUARED AND CUBED NUMBERS}

Squared numbers are numbers multiplied ONCE by themselves. Cubed numbers are numbers multiplied TWICE by themselves. A small " 2 " indicates that a number should be multiplied by itself. A small " 3 " indicates that it should be multiplied by itself twice.
```

5}\mp@subsup{}{2}{2}\mathrm{ means 5 "squared" -- or 5 times 5 or 25.
5}\mp@code{2}\mathrm{ means 5 "cubed" -- or 5 times 5 times 5 or 125.

```

In highway work, the symbols for squaring and cubing numbers are used often in formulas. The training in this section is meant to show you how squaring and cubing are done -- not how to use squared and cubed numbers as final answers.

\section*{CALCULATIONS}

The numbers below have been squared or cubed:
\begin{tabular}{lll}
Number & Calculation & Value \\
\(10^{2}\) & \(10 \times 10\) & 100 \\
\(12^{2}\) & \(12 \times 12\) & 144 \\
\(4^{3}\) & \(4 \times 4 \times 4\) & 64 \\
\(9^{3}\) & \(9 \times 9 \times 9\) & 729
\end{tabular}

\section*{PROBLEM}
6. Square or cube the following numbers as indicated:
\[
\begin{array}{ll}
4^{2} & = \\
12.3^{2} & = \\
7^{3} & = \\
2.5^{3} & = \\
\end{array}
\]

Right? Go on to "EQUATIONS."
Wrong? Check your multiplications by dividing. You probably used the right procedure, but made mistakes in calculating. If you did, go on to "EQUATIONS".

\section*{EQUATIONS}

The term "equation" means "things equal to each other."
\[
\begin{aligned}
& 10+10=5+15 \\
& (6 \times 2)+8=30-10 \\
& (14 \div 2)+13=(8 \times 2)+4
\end{aligned}
\]

Each mathematical expression above is an equation -- since the calculation left of the equal sign always results in the same answer as the calculation on the right. In this case, all calculations result in the answer "20". Each equation is the same as saying \(20=20\).

\section*{PURPOSE OF EQUATIONS}

In the example above, all the values are known and all calculations can be made quickly. In highway work, many values are unknown. Equations are used to find the values of unknowns. Each equation represents the values and calculations that will result in the value of the unknown.

\section*{LETTERS AS UNKNOWNS}

In most equations, letters are used to represent unknown values:

You know the length and width of the rectangle at the left. So, set up an equation:

The letter A represents the unknown Area.

You know the length, width and height of the rectangular solid at the left. Volume = Length x Width x Height.
So, set up an equation:
V = 8' x 6' x 6'
The letter V represents the unknown Volume.
 Length. \(\underline{W}\) for \(\underline{W}\) idth. \(\underline{H}\) for \(\underline{H e i g h t . ~}\)
The letter \(X\) can be used to represent unknown numbers that have no specific designation.

\section*{PROBLEMS}
7. Area of triangle \(=360\) S. F.

Length of base \(=32^{\prime}\)
Height = \(\qquad\)
8. Volume of rectangular solid \(=1,232 \mathrm{C} . \mathrm{F}\)

Area of base \(=176\) S.F.
Height of solid
\(=\) \(\qquad\)

Right? Go on to Problems 9-11.
Mistakes? Try again.

\section*{PROBLEMS}

Set up the equations needed for the problems below and solve for the unknowns.
9.
\begin{tabular}{ll}
Width & \(=12 \mathrm{ft}\). \\
Length & \(=10 \mathrm{ft}\). \\
0.5 of the area & \(=\)
\end{tabular}
10.
\(\mathrm{V}=1000\) C.F. (Triangular solid)
\(\mathrm{H}=10 \mathrm{ft}\).
A = \(\qquad\)
11.
\(V=1,600\) C.Y. (Rectangular solid)
\(\mathrm{L}=40 \mathrm{yds}\).
W \(=4\) yds.

H = \(\qquad\)
Right? Go on to "FORMULAS."
Mistakes? Check your equations and then your calculations.

\section*{FORMULAS}

\section*{WHAT THEY ARE}

The term "formulas" is the plural of "formula." You also may hear the term "formulae." It also is correct -- but not often used. You have been using formulas all through this chapter:
\(A=L W \quad V=A H\) or LWH
\(A=\frac{L H}{2}\)
\begin{tabular}{|c|c|c|}
\hline A = LW & Area & = Length times Width ---- squares and rectangles \\
\hline \[
A=\frac{L W}{2}
\] & Area & = Length times Width divided by 2 ---- triangles \\
\hline \(\mathrm{A}=\mathrm{LWH}\) & Volume & \(=\) Length times Width times Height ---- rectangular solids \\
\hline \[
A=\frac{L W H}{2}
\] & Volume & = Length times Width times Height divided by 2 ---- triangular solids \\
\hline \(\mathrm{A}=\pi \mathrm{r}^{2}\) & Area & \(=\) Pi times the radius squared ---- circles \\
\hline \(C=m D\) & Area & = Pi times Diameter ---- circles \\
\hline \[
\mathrm{D}=\frac{\mathbf{w}}{\mathbf{v}}
\] & Density= & ht divided by Volume \\
\hline
\end{tabular}

\section*{HOW THEY ARE USED}

As indicated earlier, formulas are used to plan calculations. They represent mathematical procedures. Cases 1 and 2 below demonstrate how formulas are used in calculating.

Case 1 -- when the formula can be used as is.
Step One -- REPLACE symbols with known values -- as shown below:
If: \(\quad A=L W\)
And: \(\quad L=5 ', W=10\) \(\left\{\begin{array}{l}L \text { has been replaced by } 5^{\circ} . \\ W \text { has been replaced by } 10^{\prime} .\end{array}\right.\)

Then: \(\quad A=5 ' \times 10^{\prime}\)

Step Two -- CALCULATE the unknown value -- as shown:
If: \(\quad A=5 ' \times 10^{\prime}\)
Then: \(\quad A=50\) sq. ft.

Some formulas are easy to solve. Others are more difficult.

Case 2 -- when the formula must be changed.

Step One -- CHANGE the formula so that you can calculate the unknown value:

If: \(\quad A=L W-\) and you must calculate for \(L\),
Then: \(\quad A / W=L\)
or: \(\quad L=A / W\)
Step Two -- REPLACE symbols with known values:
If: \(\quad L=A / W\)
And you know that \(A=50\) S.F. and \(W=10 \mathrm{ft}\).
Then: \(\quad L=\frac{A}{W}=\frac{50 \text { S.F. }}{10 \mathrm{ft} .}\)
The known values have now replaced two symbols, \(A\) and \(W\).
Step Three -- CALCULATE the unknown value:
\[
\mathrm{L}=\frac{\mathrm{A}}{\mathrm{~W}}=\frac{50 \mathrm{~S} . \mathrm{F} .}{10 \mathrm{ft} .}=5 \mathrm{ft} .
\]

You can always check your new formula by using simple values and making quick calculations. For instance: You know
\(A=L W\). Make up some values for \(L\) and \(W\), say 3 ft . and 6 ft .
Now, \(A=L W=3 \mathrm{ft} . \times 6 \mathrm{ft}=18 \mathrm{sq} . \mathrm{ft}\).
To find a formula with which you can calculate for L , find a calculation using the values for \(A\) and \(W\) that will give 3 ft . as the answer. You have to divide 18 sq. ft. by 6 ft . to get the answer 3 ft .

So \(L=\frac{18 \text { sq. ft. }}{6 \mathrm{ft}}=\frac{A}{W}\) or \(L=\frac{A}{W}\)

\section*{PROBLEMS}
12. Convert the formula \(\mathrm{H}=\mathrm{V} / \mathrm{A}-\mathrm{to}\) solve for A and V :
\[
A=
\]
\(V=\)
13. Solve for \(W\)-- using the formula \(A=L W\). Round to 0.01 .

If: \(\quad A=37.5\) sq. \(\mathrm{ft} ., L=21.3 \mathrm{ft}\).
Then: \(\quad W=\) \(\qquad\) ft .

Right? Good Work! Go on to "HIGHWAY PROBLEMS".
Wrong? Try again.

\section*{PRACTICE}

Any formula can be converted.
This is good practice in logic alone.
\[
\begin{aligned}
& M=D \div G \ldots \text { Therefore: } D=M \times G \text { and } G=D \div M \\
& \mathrm{M} \text { =miles per gallon } \\
& \mathrm{D}=\text { distance traveled, miles } \\
& \text { G =gallons of gas used } \\
& \text { Suppose: } \quad M=16 \mathrm{mpg} \text {. } \\
& \mathrm{D}=320 \mathrm{mi} \\
& \text { G = } 20 \mathrm{gal} \text {. } \\
& \text { Then: } \quad 16 \mathrm{mi} . / \mathrm{gal} .=320 \mathrm{mi} \div 20 \mathrm{gal} \text {. } \\
& \text { And: } \quad 320 \mathrm{mi}=16 \mathrm{mi} . / \mathrm{gal} . \times 20 \mathrm{gal} \text {. } \\
& \text { Yet: } \quad 20 \text { gal. }=320 \mathrm{mi} \div 16 \mathrm{mi} . / \mathrm{gal} \text {. } \\
& =320 \mathrm{mi} \times 1 \mathrm{gal} . / 16 \mathrm{mi} \text {. }
\end{aligned}
\]

\section*{Go on to "HIGHWAY PROBLEMS."}
\begin{tabular}{l}
There's a way of doing this involving substitutions and \\
calculations. It is too complex for discussion here and of \\
little or no value to inspectors. Practice a number of formulas \\
of your own, and use numbers to make them work out. You \\
soon will catch on to the relationships. \\
\hline
\end{tabular}

\section*{HIGHWAY PROBLEMS}
14. The following data were collected for computing the unknown value \(R\) for a power hammer. What is \(R\) ? Round to a whole number.
\begin{tabular}{rl}
\(R=\) & \(\frac{2 E}{S+0.1}\) \\
& \(E=7.5\) ft-tons \\
\(R=\) & \(S=0.5 \mathrm{in}\). \\
whole number
\end{tabular}
15. Using this density formula, \(D=W / V\), solve for the unknowns in each of the following. Round to 0.01. \(D\) is in units of lbs/ft , W is units of lbs, and \(V\) in units of ft .
\(\mathrm{W}=4.95, \mathrm{~V}=0.04\)
\(\mathrm{D}=\square\)
\(\mathrm{D}=129.31, \mathrm{~W}=4.66\)
\(\mathrm{~V}=\square\)
\(\mathrm{D}=127.89, \mathrm{~V}=0.03\)
\(\mathrm{~W}=\)

\section*{ANSWERS TO PROBLEMS}

Page 3-2
1. 19.64
2. 1972.4

Page 3-3
3. \(\quad X=2.15\)

Page 3-4
4. 182. 25
81.54
196.12
8060.15

Page 3-7
5. 2. \%
3. C.Y. or cu. yd.
4. Ac.
5. Ton
6. gals.
7. S.Y. or sq. yd.

Page 3-8
8. Gallon
9. yd.
10. avg
11. radius
12. Fahrenheit
13. height
14. W
15. lb.
\begin{tabular}{l}
Page \(3-10\) \\
\hline \(6 . \quad 16\) \\
151.29 \\
343 \\
\\
\\
\\
\end{tabular}

Page 3-14
9. 60 sq. ft.
10. 100 sq. ft.
11. 10 yd

Page 3-18
12. \(A=V / H, V=A H\)
13. 1.76

Page 3-20
14. 25
15. 123.75
0.04
3.84

Page 3-13
7. 22.5 ft .
8. 7 ft .

\section*{CHAPTER FOUR}

\section*{Units of Measurement}

\section*{CONTENTS}
TERMS AND MEASURES 4-4
LENGTH, AREA AND VOLUME MEASUREMENTS 4-5
WEIGHT MEASUREMENTS 4-12
LIQUID MEASUREMENTS 4-16
RATE MEASUREMENTS 4-17
HIGHWAY PROBLEMS 4-21
ANSWERS TO PROBLEMS 4-23

\section*{UNITS OF MEASUREMENT}

\section*{STARTING POINTS FOR TRAINING}

Determine the space occupied by the concrete structures in Problems 1, 2 and 3 -- then check your answer.

\section*{PROBLEM}
1. \(\quad V=L W H\)

A box that measures \(15.60 \mathrm{ft} . \times 11.40 \mathrm{ft} . \times 6.30 \mathrm{ft}\).

> The degrees of accuracy needed in the final answers are noted under the blanks for the answers.
\(\mathrm{V}=\) \(\qquad\) cu.yds.
0.01

\section*{PROBLEMS, continued}
2.

A portland cement concrete footing that measures:
```

2'3" x 2 1/10' x 9.3'
V =

```
\(\qquad\)
``` cu.yds.
0.01
```

3.

A concrete structure that measures:
$0.90 \mathrm{ft} . \times 18.60 \mathrm{in} . \times 2.70 \mathrm{ft}$.
\qquad cu.yds.

Right on Problems 1, 2 and 3? Excellent! Skip to "WEIGHT MEASUREMENTS."
Wrong? Start with "TERMS AND MEASURES" on the next page.

TERMS AND MEASURES

You already know much or all of the information discussed in this chapter relative to measurement -- BUT, let's review.

TERMS USED

The term "measure" refers to standard values: 12 inches per foot, 16 ounces per pound, 43,560 square feet per acre, 27 cubic feet per cubic yard.

The term "measurement" means the actual measure of something -- length, weight, area or volume.

TYPES OF MEASURES

The six basic types of measures are:
$>$ Length
$>$ Area
> Space volume
$>$ Liquid volume
$>$ Weight (mass)
$>$ Rate -- as in gallons per square yard.

LENGTH, AREA AND VOLUME MEASUREMENTS

LENGTH

Measurements of length, width, height and distance are linear measurements. Examples of linear measures are inches, feet, yards and miles.

AREA
Measurements of area are in square measurements and hectares. Examples of the term "square" are square inches, square feet, square yards, and square miles.

VOLUME

Measurements of volume are cubic measurements. An example of the term "cubic" are cubic inches, cubic feet, and cubic yards.

CALCULATING LENGTH, AREA AND VOLUME MEASUREMENTS

Length

Add or subtract lengths and distances to obtain measurements:
$550 \mathrm{ft} .+475 \mathrm{ft} .+370 \mathrm{ft} .=1395 \mathrm{ft}$.

Area

One -- Multiply length times width to calculate areas of squares and rectangles:

$$
\text { 6' x 2' = } 12 \text { sq.ft. }
$$

Two -- Divide by 2 to calculate areas of triangles:

$$
\text { [6' x2'] / } 2 \text { = } 6 \text { sq.ft. }
$$

Right triangles are 0.5 of a rectangle.

Volume

Multiply length time's width time's height to calculate volumes of cubes and rectangular solids:

$6 \mathrm{ft} . \times 3 \mathrm{ft} . \times 2 \mathrm{ft} .=36 \mathrm{cu} . \mathrm{ft}$.

The term "volume" represents quantity of space measured in cubic inches, cubic feet or cubic yards.

Note:

Linear times linear = square
Square times linear = cubic
Cubic divided by linear = square

Linear $=$ Length
Square = Area
Cubic = Volume

Cubic divided by square = linear
Square divided by linear = linear

PROBLEM

4.

1 acre	sq ft.
1 square yard	$=\ldots$ sq. ft.
1 mile	ft .
1 cubic yard	_cu. ft.
1 cubic foot	cu. in.

5.

square foot multiplied by foot results in what? \qquad
cubic yard divided by square yard results in what? \qquad
inch multiplied by inch results in what? \qquad
inch times inch times inch results in what? \qquad

Area times height results in what? \qquad

PROBLEM

6.

Calculate the areas and volumes shown below:

$$
=
$$

sq.ft.

$=$ \qquad cu.ft. nearest whole number

Right? Study the "REVIEW OF LENGTH, AREA AND VOLUME MEASUREMENTS" on page 4-11.
Mistakes? Check your multiplications by dividing. If you still have errors, check the conversion tables.

REVIEW OF LENGTH, AREA AND VOLUME MEASUREMENTS

The whole business of length, area and volume measurements is summarized below:
Length means distance -- how long something is or how far it is from one point to another, as the length of a pipe culvert or the distance from one side of a road surface to the other.

Measurements of length, width, height, depth, diameter, radius and distance are linear or lineal measurements.

Area means surface size. The surface sizes of squares and rectangles are obtained by multiplying the lengths by the widths.

If the surface is vertical, such as a wall, multiply length by height. If the surface is a triangle, multiply the length by the height and divide by two.

Volume means capacity -- how much space is contained in the object. Volumes of cubes and rectangular solids are obtained by multiplying one surface area by height or depth -- length x width x height or depth.

Standard length, area and volume values are shown in the tables at the beginning of this chapter. Length, area and volume measurements involve common calculations -- inches can be added to, subtracted from and multiplied by inches, but not by other units.

Go on to "WEIGHT MEASUREMENTS."

WEIGHT MEASUREMENTS

TABLE OF MEASURES

The weight measures used by the Department are shown below:
WEIGHT MEASURES

Measure	Symbols (Abbreviation)	Equivalent
GRAM	G	-------------
POUND	lb.	16 oz.
TON	Tn	2000 lbs.

PROBLEM

7.

Convert the following measurements as indicated. Round to 0.01 .

$1,650 \mathrm{lbs}$.	$=\ldots$
14.78 tons	$=\ldots$
tons	
57.8 oz.	$=\ldots$
2.96 lbs.	lbs.
	oz.

PROBLEMS

8. Convert the following and round:

9.

Calculate the following and round:

$$
2.8 \text { lbs. +12.2 oz. + } 38.5 \text { oz. }=
$$ oz.

$12.9 \mathrm{lbs} .+62.3 \mathrm{oz} .+5.8 \mathrm{lbs} .=$ \qquad lbs.
whole number

FORMULA DATA

As an inspector, you will be given many formulas by the bridge and road design engineers, the materials testing engineers and the construction engineers.
For instance, a formula for calculating the bearing value on a test piling is:

$$
\begin{array}{lll}
\mathrm{R}=\frac{167 \mathrm{WH}}{\mathrm{~S}+25.4} \text { for gravity hammers } & \mathrm{R} & =\text { Safe bearing value in tons } \\
\text { Customary Units: } & \mathrm{W} & =\text { Weight of striking part of hammer in tons. } \\
\mathrm{R}=\frac{2 \mathrm{WH}}{\mathrm{~S}+1.0} \text { for gravity hammers } & \mathrm{H} & =\text { Height of hammer fall to the nearest } 0.1 \text { foot. } \\
& \mathrm{S} & =\begin{array}{l}
\text { Average penetration per blow to the nearest } 0.01 \\
\text { inch for the last } 10 \text { to } 20 \text { hammer blows. }
\end{array}
\end{array}
$$

Suppose these are your data:

Weight of hammer	$=1.08$ tons.
Height of fall	$=12$ feet
Average penetration	$=0.50$ inches

There you are! Several items of raw data and a formula. And you don't even understand the formula. Well, you don't have to understand it. You have to be able only to work with it. You can start anywhere. The sequence of the next page is only one of several possible sequences.

First -- Add the known value to the formula:

$$
R=\frac{2 W H}{S+1.0}=\frac{2(1.08 \times 12)}{0.50+1.0}
$$

Note: The units of measurement, i.e.: tons, feet, etc. are not used in this formula; only the numerical values are calculated. Study carefully the formula above and the values used in place of the symbols.

Second -- Calculate as the formula procedure indicates:

$$
R=\frac{2(1.08 \times 12)}{0.50+1.0}=\frac{25.92}{1.50}=17.28 \text { tons }
$$

$R($ rounded to 0.1$)=17.3$ tons

PROBLEM

10.

In the formula, $\quad \mathrm{R}=\frac{2 \mathrm{WH}}{\mathrm{S}+1.0}$

What would be the bearing value if the raw data were these?

$$
\begin{array}{ll}
\text { Weight of hammer } & =1.22 \text { tons } \\
\text { Height of fall }=10 \mathrm{ft} . & \\
\text { Average penetration } & =0.40 \mathrm{in} .
\end{array}
$$

$R=$ \qquad tons
0.1

LIQUID MEASUREMENTS

The only liquid measurement used in highway construction work is gallons. Capacities in gallons often are calculated in cubic feet:
7.48 gallons $=1$ cubic foot
-- To convert cubic feet to gallons, multiply by7.5.
-- To convert gallons to cubic feet, divide by 7.5.
However, don't forget the rules of rounding and degrees of accuracy.

PROBLEM

11. How many gallons of liquid can be placed in a container having a 283.5 cubic foot capacity?
\qquad gals.
whole number
Calculation, Problem 11
283.5 cu. ft. $\times 7.5$ gals. per cu. ft. $=2,126.25$ gals

Rounded to: 2,126 gals.
Go on to "RATE MEASUREMENTS."

RATE MEASUREMENTS

CALCULATING RATES

Highway personnel often must be able to calculate rates -- gallons per square yard, cubic feet per minute, cubic yards per hour.

Two measures are involved in every rate calculation -- such as gallons and yards, feet and minutes, or cubic yards and hours. Of these, one is a fixed value, the other a variable.

Liquid asphalt application rates are expressed in gallons per square yard . The square yard is a fixed value. It never changes. The number of gallons applied is a variable value. It changes.

Rates of all kinds can be expressed as "formulas." For example, asphalt application rates can be expressed as follows:

$$
\begin{aligned}
\text { Asphalt application rate } & =\frac{\text { gallons applied }}{\text { area covered }} \\
\qquad & \\
\text { (or) rate } & =\frac{\text { gals. }}{\text { sq.yds. }}
\end{aligned}
$$

Rule: Divide variable values by the fixed values to get rates.

Work the problem on the next page. The relationships existing in all forms of rates should become clear.

CALCULATING RATES (continued)

Sample Problem

Quantity of asphalt used: 1,474 gal.
Width of spray bar: 21 feet
Length of application:1,755 feet
What is the application rate -- in gallons per square yard?

Solution

You already know the rate "formula:" Application rate $=\frac{\text { gallons applied }}{\text { area in sq.yds. }}$

$$
\text { (or) Rate }=\frac{\text { gals. }}{\text { sq.yds. }}
$$

The liters (gallons) used are known, but the area is unknown. So, compute the "unknown" quantity -- which is the area covered - as follows: $A=L W=1755 \mathrm{ft} . \times 21 \mathrm{ft} .=36,855 \mathrm{sq} . \mathrm{ft}$.

Now, you can "plug-in" the known quantities -- into the application rate formula.
Application rate $=\frac{1,474 \text { gals. }}{4,095 \text { sq.yds. }}=\frac{0.36 \text { gals. }}{1 \text { sq.yd. }}=0.36$ gals. per sq.yd

Note: The "rate" itself must be expressed as gallons per ONE square yard." The quantities in the rate formula are calculated by DIVIDING the yards into the gallons as indicated above. The variable value is divided by the fixed value -- the gallons by the square yards.

Remember, a "rate" is an expression of a variable value per one unit of a fixed value. Above, the fixed unit is one square yard.

PROBLEM

12. A contractor placed 1,000 gallons of asphalt on 2,700 square yards of road surface. What was the application rate?

Right? Keep going. Wrong? Keep going too. Rates will soon become clear.

Application Rates Problem Using an application rate of 0.38 gals./sq. yd., how many gallons of asphalt will be needed to cover an area 22' wide by 11.2 miles?

Calculation

11.2 miles $=5,280 \mathrm{ft}$. per mile $\times 11.2 \mathrm{mi} .=59,136 \mathrm{ft}$
$59,136 \mathrm{ft} . \times 22 \mathrm{ft} .=1,300,992 \mathrm{sq} . \mathrm{ft} . \quad(1,300,992 \mathrm{sq} . \mathrm{ft} . \quad 9 \mathrm{sq} . \mathrm{ft} .=144,554.67 \mathrm{sq} \cdot \mathrm{yds}$.
$144,554.67$ sq. yds. can be rounded to 144,555 sq. yds.
144,555 sq.yds. $x 0.38$ gals. per sq. yds. $=54,930.9$ gals.
($54,930.9$ can be rounded to 54,931 gals.)

PROBLEM

13. An asphalt plant produces 12.35 tons of hot asphalt every 5 minutes. What is the production rate in tons per hour?

Other Rates Problem

A batch plant produced the portland cement concrete needed in laying 3,800 linear feet of 9" pavement, 12' wide in a 12-hour day. What was the productive capacity of the plant in cubic yards per hour?

Calculation
3,800 lineal feet times 12 lineal feet
$=45,600$ square feet.
9 inches $=0.75$ feet
45,600 square feet times 0.75 lineal feet
$=34,200$ cubic feet.
(34,200 cubic feet divided by 27 cubic feet per cubic yard $=1,266.67$ cubic yards).
$1,266.67$ cubic yards divided by 12 hours
$=105.56$ cubic yards per hour.
As you can see:
Feet multiplied by feet provides answers in square feet.
Square feet multiplied by feet provides answers in cubic feet.
Cubic feet divided by the fixed value of 27 cubic feet per cubic yard provides answers in cubic yards. Total production divided by hours of production provides answers in terms of productivity per hour.

Go on to "HIGHWAY PROBLEMS."

HIGHWAY PROBLEMS

14. How many acres are there in a parcel of land 145^{\prime} wide and 240 ' long?

$$
\mathrm{A}=\prod_{0.001} \text { acres }
$$

15. How much does the following water tank hold? [1 ft $=7.48$ gals.]

$$
\begin{aligned}
& L=10.5^{\prime} 0 \\
& H=5.2^{\prime} \\
& W=5.1^{\prime}
\end{aligned}
$$

$$
V=\frac{}{\text { whole number }} \text { gals. }
$$

16. A section of portland cement concrete box culvert measures 44 feet 8 inches by 4 feet 6 inches by 9 inches. How much concrete is needed?

$$
\mathrm{V}=\ldots \quad \mathrm{cu} . \mathrm{yds}
$$

17. An asphalt distributor is fitted with a (an) 18-foot spray bar. During a shot, the distributor traveled 1500 linear feet. $1,153.8$ gallons of liquid asphalt were used.

What was the application rate?
\qquad gals./sq. yd.
0.01

HIGHWAY PROBLEMS, continued

18. A Contractor drove a timber piling with a single-acting air hammer. Compute the bearing capacity (R) in tons based on the data below:

$$
R=\frac{2 E}{S+0.1+0.01 P}
$$

Where:
$R=$ Safe Bearing value in tons
$S=$ Average penetration per blow, in inches, as recorded for the last 10 to 20 blows
$\mathrm{E}=\mathrm{WH}=$ the energy that the hammer delivers, in foot-tons
W = Weight of striking part of hammer in tons
$H=$ Height of hammer fall in feet
Test Data:
Weight of hammer $=1.5$ tons
Height of hammer $=13 \mathrm{ft}$.
Average penetration per blow for the last $\underline{10}$ blows $=0.25$ "
$R=$ \qquad tons
0.1

HIGHWAY PROBLEMS, continued

18. Surface treatment is planned for 12,000 square yards on S.R. 435. The application rate for aggregate is 0.25 cubic feet per square yard. How many cubic yards of aggregate are needed?
\qquad C.Y.
whole number
19. A 216-cubic foot truck hauled 11 loads of limerock material to your job site. How many cubic yards of material is this?
\qquad C.Y.
whole number

ANSWER TO PROBLEMS

$\frac{\text { Page 4-2 }}{1 . \quad 41.50}$

Page 4-3
2. 1.63
3. 0.14

Page 4-8
 4 . 43,560
 9
 5,280
 27
 1,728

Page 4-9

5. cubic feet yard
square inches cubic inches volume

Page 4-10
6. $\quad 13.12$ 37.80 sq. ft. 100

Page 4-12

7. 0.83

29,560.00
3.61
47.36

Page 4-13
8. 0.83
1.7
9. $\quad 95.5$

23
Page 4-16
10. 17.4

Page 4-17
11. 2,126

Page 4-20
12. 0.37 gals/sq. yds.

Page 4-21
13. 148.20 tons/hour

Page 4-22
14. 0.799 acres
15. 2,083 gals.
16. $\quad 5.6 \mathrm{cu} . \mathrm{yds}$
17. $\quad 0.38$ gals./sq. yds.

Page 4-23

18. 70.9 tons

Page 4-24
19. 111 C.Y.
20. 88 C.Y.

CHAPTER FIVE

Averages- Percents- Ratios- Proportions
 CONTENTS

AVERAGES 5-5
WORKING WITH PERCENTAGES 5-8
WORKING WITH RATIOS AND PROPORTIONS 5-15
HIGHWAY PROBLEMS 5-21
ANSWERS TO PROBLEMS 5-27
QUIZ ON CHAPTERS THREE, FOUR AND FIVE 5-28
ANSWERS TO QUIZ 5-35

Editors Note: This chapter introduces the term "slope". It has been traditional in road building organizations to refer to slope a "run over rise". In other words the first number indicated the length of a slope and the second number indicated the height. When the Department changed to metric in 1992, the metric version of slope was adopted. The Metric version of slope uses "rise over run". The Departments Metric to English Conversion Committee decided in 1998 to keep this feature of the metric system while returning back to English units. This was done to keep the Departments slope reference more in keeping with today's accepted standards.

This manual uses slope as rise over run (i.e., $1: 3$ slope means that the slope has a foot "rise "or "height" for every three feet of "run" or "length". During this transition period, the Inspector will encounter both systems in the field. While in the field, it is important for the Inspector to determine which system the Contractor has marked on the lay out stakes and which system is being used in the plans for estimating purposes. The mathematics used with slope in this chapter and throughout the rest of this text does not change.

AVERAGES- PERCENTS- RATIOS- PROPORTIONS

STARTING POINTS FOR TRAINING
PROBLEMS

1. The results of the Marshall Stability Test for three pills are

Stability Test	
2	
3	660
3	665

Average = \qquad pounds
whole number

Make a mistake? Skip Problems 2, 3 and 4, and start studying "AVERAGES."
Get the right answer? Try Problem 2.

PROBLEMS, continued

2.

Write each of the following as percentages:

0.30	$\%$
0.10	$\%$
0.965	$\%$

Calculate the following percentage: 27.5% of 123

If you made mistakes, skip Problems 3 and 4 study "WORKING WITH PERCENTAGES."
If not, try Problem 3.

PROBLEMS, continued

3.

A slope has a $1: 3$ slope ratio and a vertical distance of 6.5 ft . What is the horizontal distance?
Horizontal distance = \qquad ft.
(0.1)

A slope has a 1:3.5 ratio and a horizontal distance of 26 ft . What is the vertical distance?
Vertical distance $=$ \qquad ft.
(0.01)

If you made mistakes, skip Problem 4 and study the ratio section of "WORKING WITH RATIOS AND PROPORTIONS." Review "WORKING WITH PERCENTAGES" first, if you like.

If you made no mistakes, try Problem 4.
4. A portland cement concrete mix design contains 6 bags of cement per 1.11 cu . yds. of mixed aggregate. How many bags of cement will be needed for 16.2 cu . yds. of mixed aggregate?

> tenths

If you made a mistake, start studying the proportion section of "WORKING WITH RATIOS AND PROPORTIONS." Study "WORKING WITH PERCENTAGES" and the complete section "WORKING WITH RATIOS AND PROPORTIONS" first if you like.

If you did not make a mistake, work the "HIGHWAY PROBLEMS" at the end of this chapter for practice. If you have difficulty with those problems, study the appropriate sections in this chapter.

AVERAGES

Averages are computed by:
-Adding the series of numbers like this:

- Dividing them by the number of tems in the series -- 5 items:
$\begin{array}{r}12 \\ 27 \\ 18 \\ 21 \\ +19 \\ \hline 97\end{array}$

The average of this series is 19.4 -- the number obtained by dividing.

Have you written a formula for finding averages? Go ahead. Try. Then check it against this one:

$$
\text { Average }=\frac{\text { sum total of the numbers when added }}{\text { the numbers of numbers added }}
$$

With abbreviations and symbols you can write the formula like this:

$$
\operatorname{Avg}=\underline{X}_{1}+X_{2} \underline{\ldots} X_{n}
$$

PROBLEM

5. Calculate the averages of the following series of numbers:
```
431+500+439+414
2011+1991 + 2181
```

Right? Try Problem 6.
Wrong? You must have missed the point. Adding all of the numbers and dividing by the number of numbers in the series obtain the average. The two calculations from Problem 5 are shown below:

-- Be sure you add correctly. Check your addition if necessary.
-- Divide your answer by the number of items added. Check your division.
Try Problem 6.

PROBLEM

6. What is the average of $8+8.25+7.875+8.125+8 ?$

Go to "WORKING WITH PERCENTAGES."

WORKING WITH PERCENTAGES

Percentages are expressed in 0.01. For example 0.125 , which can be written as 12.5% or 12.5 percent. Here are some other examples:

0.1	$=10 \%$ or 10.0 percent		$0.667=66.7 \%$ or 66.7 percent
0.25	$=25 \%$ or 25.0 percent		$0.75=75 \%$ or 75.0 percent
0.333	$=33.3 \%$ or 33.3 percent	1	$=100 \%$ or 100.0 percent
0.5	= 50% or 50.0 percent		$1.5=150 \%$ or 150.0 percent

A ten-percent increase from 90 is 99 . A ten-percent decrease from 99 is 89.1 . Seventy-five percent of 200 is 150 . The number 150, when increased by 25 percent, is 187.5.

CALCULATING PERCENTAGES

To calculate a percentage, divide the numerator by the denominator and move the decimal point two places to the right

PROBLEM

7. Calculate the following percentages:

Right? Study "WHAT TO CALCULATE."
Wrong? Go back and review.

WHAT TO CALCULATE

Suppose you want to know the percentage of moisture in a sample, based on the dry mass (weight) of the sample. which number is divided by which?

Divide the amount of moisture by the dry weight and change the answer to a percentage. $\frac{\mathbf{M}}{\mathbf{D}}=\% \mathbf{M}$
First --Subtract dry weight from wet weight to find the amount of weight loss.

> | 7.14 g | wet weight |
| ---: | :--- |
| -6.79 g | dry weight |
| 0.35 g | weight loss |

Second -- Divide the amount of weight loss by the dry weight.

$0.0515($ rounded to 0.001$)=0.052$

$6,79, \longdiv { 0 , 3 5 0 0 0 0 }$
Third --Change the decimal answer to a percentage. $0.052=5.2 \%$

The moisture content is 5.2% (rounded) based on dry weight.

If the weight of the moisture had been divided by the wet weight, the calculation would have shown a moisture content of 4.9% based on the wet weight.

Check your calculations:
$6.79 \times 0.052=0.35380$ or 0.35 g
Dry weight \times percent moisture as a decimal $=$ weight loss in grams

READING DECIMAL NUMBERS AND PERCENTAGES

Calculating percentages is easy -- but reading them gives some people difficulty.
-- Move the decimal point two places right to read a decimal number as a percentage.
-- Move the decimal point two places left to read a percentage as a decimal number.

$$
0.333=33.3 \%
$$

$33.3 \%=0.333$

Decimal Number	Percentage	Percentage	Decimal Number
0.100	10.0	15.0	0.15
0.970	97.0	2.230	223.0

And

$$
\begin{array}{lll}
0.02 \% & =0.02 \text { of } 1 \%-\text {-(Two one-hundredths of one percent) } & =0.0002 \\
0.20 \% & =0.2 \text { of } 1 \%-\text { (Two-tenths) } & =0.0020 \\
2.00 \% & =2 \%-\text { Two percent } & =0.02 \\
20.00 \% & =20 \%-\text { Twenty percent } & =0.20
\end{array}
$$

PROBLEM

8. Read the following numbers as percents. The first one has been completed to show how the answers should be written.
```
0.007 = 0.7%,or zero point seven percent
0.094 =
0.87=
    1.36=
```

\qquad

MOVING DECIMAL POINTS

Percents often contain decimal points -- but they are not ordinary decimal numbers.
-- The decimal number 0.10 must be changed to 10.0 to be used as a percent -- 10.0%.
-- The decimal number 0.000613 must be changed to 0.0613 to be used as a percent -- 0.0613%
-- Also, $0.92=92 \%$, and $0.9271=92.71 \%$.

```
And: \(\quad 0.09 \%=\underline{0.09}=0.0009\) as a decimal number 100
```

125
$\overline{100}$ of $1 \%=\frac{125}{100} \%=1.25 \%=\underline{125}=0.0125$ as a decimal

PROBLEM

9. A sample of dried aggregate weighs $2.95 \mathrm{lbs} .10 \%$ does not pass the No. 4 sieve. 14% passes the No. 4 sieve but does not pass the No. 10 sieve. The balance passes the No. 10 sieve.

What is the weight of the aggregate that passes the No. 10 sieve?

For Problem 9, find what percentage of the aggregate passed the No. 10 sieve.
$10 \%+14 \%=24 \%-$ percentage not passing No. 10 sieve.
$100 \%-24 \%=76 \%-$ percentage passing No. 10 sieve.
Then change the percentage to a weight value, as shown:
$2.95 \mathrm{lbs} . \times 76 \%=2.24 \mathrm{lbs}_{\text {: }}$ weight of aggregate passing the No. 10 sieve.
Try Problem 10.

PROBLEMS, continued

10. If the percent moisture, based on dry weight, is 4.6%-- how much would $3,000 \mathrm{lbs}$. of dry aggregate weight wet?

Wet weight = \qquad lbs.

Right? Of course! You had to add the weight of the moisture [4.6\% of the dry weight] to the dry weight. You could have done it two ways: adding percents or adding weights. Calculations are shown below.

If the dry weight of the aggregate is 100.00% of the $3,000 \mathrm{lbs}$. and the weight of the moisture is 4.6% of the $3,000 \mathrm{lbs}$., then the wet weight of the aggregate can be found by adding.

Adding Percents

(Wet weight) = dry weight + moisture weight

$$
=100 \%+4.6 \% \text { of } 3,000 \mathrm{lbs} .
$$

$$
=104.6 \% \text { of } 3,000 \mathrm{lbs}
$$

But 104.6\% = 1.046
Wet weight $=1.046 \times 3,000 \mathrm{lbs} .=3138 \mathrm{lbs}$.

Adding weights

Moisture weight $=4.6 \%$ of $3,000 \mathrm{lbs}$

$$
\text { But } 4.6 \% \quad=0.046
$$

Moisture weight $=0.046 \times 3,000 \mathrm{lbs}$.

$$
=62.6 \mathrm{~kg} \text { (138 lbs.) }
$$

Wet weight = dry weight + moisture weight $=3,000 \mathrm{lbs} .+138 \mathrm{lbs}$.
$=3,138 \mathrm{lbs}$.

PROBLEMS, continued

11.

Move the decimal points to change the decimal calculations to percentage readings:

Study "MEANING OF 100 PERCENT" below.

MEANING OF 100 PERCENT

One hundred percent of a unit means the WHOLE THING. Fifty percent of the unit means half of it. And two hundred percent of a unit is just another way of saying 2 units. Five hundred percent -- five units, etc.

WORKING WITH RATIOS AND PROPORTIONS

Ratios express relationships between values:
-- A ratio of 1 engineer to 4 technicians means that one engineer is employed for every four technicians employed. The ratio is shown as 1:4.
-- (A ratio of 1 to 5 -- written 1:5 -- can be used to mean a 1-foot vertical distance to 5 -foot horizontal distance).
Proportions express equality between ratios. Expressions using two ratios -- as in 3:1 = 6:2 -- are called proportions.
-- The proportion 3:1 = 6:2 is read as "three to one equals six to two" or "three is to one as six is to two."
-- A proportion of $4: 1=16: 4$ can be used in calculating a mix.

SLOPE RATIOS

Slope ratios are expressed as 1: 3 -- meaning 1 foot to 3 feet.
The first number represents vertical distance -- distance up or down -- and the second represents horizontal distance -distance out:

CALCULATING RATIOS FROM VALUES

Only one step is needed to work out a ratio from a given set of values: Divide one value by the other.
-- Horizontal distance Unknown
-- Vertical distance 65 feet -- Multiply 65 by 6 -- 390 ft .
-- Slope ratio 1:6
-- Horizontal distance 390 feet
-- Vertical distance Unknown -- Divide 390 by $6-65 \mathrm{ft}$.
-- Slope ratio 1:6

CALCULATE VALUES FROM RATIOS

Given one value and a ratio, the other value can readily be calculated. Either multiply or divide.
-- Horizontal distance 42 feet
-- Vertical distance $\quad 10.5$ feet -- Divide 42 by 10.5 -- 1:4 slope ratio
-- Slope ratio Unknown
-- Coarse aggregate 720 cubic yards
-- Fine aggregate 120 cubic yards -- Divide 720 by $120--6: 1$ ratio
-- Ratio Unknown

PROBLEMS

Right? On all three? Study "CALCULATING VALUES USING PROPORTIONS."
Mistake? Go back and review.

CALCULATING VALUES USING PROPORTIONS

Proportions are used to find needed quantities.
If coarse aggregate and fine aggregate are to be mixed in a ratio of 2.5: 1, and you have 2000 cubic yards of fine aggregate, how many cubic yards of coarse aggregate will be needed?

$$
\text { -- 2.5:1 = Unknown: 2,000 cu. yds. } \quad-\text { or, } 2.5: 1=X: 2,000 \text { cu. yds. }
$$

Since, in the first ratio, the first value is 2.5 times as much as the second value, the comparable value in the other ratio must be 2.5 times as much as the second value.
-- 2.5 times $2,000 \mathrm{cu}$. yds. is $5,000 \mathrm{cu}$. yds.
So $2.5: 1=5,000 \mathrm{cu}$. yds. :2,000 cu. yds. -- or the coarse aggregate needed $=5,000$ cubic yards
Any combination of ratios can be used. Here are three:

$$
\begin{aligned}
& 6: 1=18,600: \text { something } 5: 4=\text { X: } 4,420 \quad 7: 6=7,770: X \\
& 6: 1=18,600: \frac{18,600}{6} \\
& 5: 4=\frac{5}{4} \text { of } 4,420: 4,420 \\
& 6: 1=18,600: \underline{3,100} \\
& 5: 4=5,525: 4,420
\end{aligned} \quad \text { Since } \frac{5}{4} \text { of } 4,420=5,525 \quad \frac{6}{7} \text { of } 7,770=6,660 \quad \text { of } 7,770
$$

ANOTHER PROPORTION

If fill from a borrow pit shrinks 20% after it is compacted, how much will be needed to fill 4,000 cubic yards? Since one cubic yard of material from the pit yields? yards of fill, the problem readily can be set up.

1C.Y. :0.80C.Y.

Since 1: $0.80=1.25$, and $X=4,000$ times 1.25

Then 1: $0.80=\underline{5,000}$ C.Y. $: 4,000$ C.Y.
Check
20% of 5,000 C.Y. $=1,000$ C.Y.
5,000 C.Y. - 1,000 C.Y. $=4,000$ C.Y.
If sand contains 17% water based on dry weight, how much wet sand is needed to provide $3,450 \mathrm{lbs}$. of dry sand? Since dry weight is the base value - dry weight $=100 \%$. If the total weight is 17% water - the wet weight is 117% of the dry weight as shown below:

```
Dry weight = 100%
Water
    = 17%
Total Weight [Wet weight]
So -- Wet weight
= 117% of 3,450 lbs. (dry sand)
    = 1.17 x 3,450 lbs.
    =4,036.5 lbs.
```


PROBLEMS

Set these problems up as proportions. Work them any way you like.
15. A sample of sand has a wet weight of 11 lbs . The sample contains 1.2 lbs . of water. How much water will $1,600 \mathrm{lbs}$. of wet sand contain?
\qquad lbs. water
0.1
16. A portland cement concrete mix design specified 6 bags of cement and $1,284 \mathrm{lbs}$. of fine aggregate per cubic yard of concrete. How many lbs. of fine aggregate will be required for a 28 -bag mix?
\qquad lbs.
17. 58 gallons of asphalt were used during a 100' seal coat test run. At this rate, how many gallons of asphalt will be used in a 1,250 run?
\qquad
gals.
Right? Work the "HIGHWAY PROBLEMS."
Mistakes? Go back and review.

HIGHWAY PROBLEMS

18. A gradation test was run on 5 samples of Grade No. 3 aggregate. The percentages found passing the 1" sieve are listed below. What would be the average percent passing?
```
            75.3
            70.4
            7 2 . 6
                            7 3 . 1
                            74.9
whole number %
whole number
```

19. Determine the average pavement thickness based on these core samples:

Core \# 1--9 $\frac{\text { Depth }}{\frac{5}{5} \text { inches deep }}$
Core \# 2-9 inches deep
Core \# 3--9 1 inches deep
Core \# 4--9 1 inches deep
8
Core \# 5--9 $\underline{5}$ inches deep
8
Average thickness $=$ \qquad in.

HIGHWAY PROBLEMS, continued

20. A sample was taken from a soil cement job. The wet weight of the material was 603.13 g and the dry weight as 565.79 g .

What was the moisture content (\%) at this sample on dry mass?

21. At station $5+02.92$ the P.I. elevation is 95.67 ft . At station $8+68.60$ the P.I. elevation is 104.39 ft .

What is the grade?

```
Percent grade = Vertical rise or fall }10
    Horizontal distance
At station 5 + 02.92 the P.I. elevation is 95.67 ft.
At station 8+68.60 the P.I. elevation is 104.39 ft.
What is the % grade?
Percent grade =
```

\qquad

``` \%
0.01
```


HIGHWAY PROBLEMS, continued

22. Percent moisture $=\underline{\text { Wet weight }- \text { Dry weight } \times 100}$ Dry weight

A 116.6 g sample of fine aggregate is dried. The dry weight is 108.3 g . What is the percent moisture?

Percent moisture $=$ \qquad \%
0.1
23. A total run of asphalt mix weighs $40,000 \mathrm{lbs}$. If 6.5% of this weight is the asphalt, what is the weight of the aggregate?

Weight of aggregate $=$ \qquad lbs.
whole number
24. A 20 lb . sample was taken from a stockpile. 3.1 lbs . pass the \#10 sieve.

What percentage of the total sample passed the \#10 sieve?
\qquad \%
whole number

HIGHWAY PROBLEMS, continued
25. Compute the vertical distance:

$$
\text { Verticsl distance }=\frac{\mathrm{ft}}{0.1}
$$

26. Determine the slope ratio:

Slope ratio $=$ \qquad 1

HIGHWAY PROBLEMS, continued

27.

What length of 36 " - diameter pipe is needed for the culvert below? (Disregard the slope of the pipe itself.)

$$
\text { Pipe length }=\ldots \quad \mathrm{ft} .
$$

28. It takes 4.7 sq. yds. of portland cement concrete pavement per linear foot of ditch pavement. How many sq. yds. of concrete ditch pavement will be necessary on a 4,550 project?
\qquad
whole number

HIGHWAY PROBLEMS, continued

Work Problems 29 and 30 as proportions:
29. If shrinkage is 15%, how many cubic yards of material will be needed for a base course 1.520 miles long, 25 feet wide and 6 inches deep?
\qquad cu.yds.
30. 6 bags of cement are used for 1 cubic yard of concrete. How many pounds of cement will you need for $21 / 4$ yards? 1 bag cement = 94 lbs .
\qquad
lbs.
whole number

ANSWERS TO PROBLEMS

Page 5-3	Page 5-8	Page 5-15	Page 5-23
1. 662	6. 8.05	11. 33.3	20. 6.6
		$\begin{aligned} & 5 \\ & 30 \end{aligned}$	21. 2.38
Page 5-4	Page 5-10	Page 5-18	Page 5-24
$\begin{array}{ll} \hline \text { 2. } & 30 \\ & 10 \\ & 96.5 \\ & 33.83 \end{array}$	7. 30	12. 1:5: 8	22. 7.7
	80	13. $10.5{ }^{\prime}$	23. 37,400
	40	14.5.9'	24. 16
Page 5-5	Page 5-12		Page 5-25
3. 19.5 7.43 4. 87.6	8. 9.4%, or nine point four percent 87%, or eighty-seven percent 136%, or one hundred thirty-six percent		25. 6.3
			26. 0.2
Page 5-7	Page 5-13	Page 5-21	Page 5-26
$\begin{array}{ll}\text { 5. } & 446 \\ & 2,061\end{array}$	9. 2.24	15. 174.5	27. 43.1
		16. 5,992	28. 21,385
		17. 725	
	Page 5-14	Page 5-22	Page 5-27
	10. 3,138	18. 73	29. 4,272.9
		19. $93 / 8$ or 9.375	30. 1,269
		5-27	

QUIZ ON CHAPTERS THREE, FOUR AND FIVE

You should be able to answer 85% of the questions correctly without going back to Chapters Three, Four and Five. Try it.

1. What are the symbols for the following terms? (3)

Average \qquad Pi \qquad Ratio \qquad
2.

To square a number is to \qquad (1)
3. To cube a number is to \qquad (1)
4. Feet times feet $=$ \qquad feet (1)
5. Cubic feet divided by feet $=$ \qquad feet (1)
6. \quad Square feet times feet $=$ \qquad feet (1)
7. \quad Cubic feet divided by square feet $=$ \qquad feet (1)

QUIZ, continued

8. Is " $\mathrm{X}=25.3$ 3.87" a ratio or an equation? \qquad (1)
9. In equations, what you do to one side must be \qquad (1)
10. Write this problem as a line equation:

$$
\begin{array}{r}
27.54 \times \quad 98.10 \\
+33.07 \tag{1}\\
\hline
\end{array}
$$

11. Develop formulas for the following: (5)
-- The area of a rectangle
-- The volume of a rectangular solid
-- The length of a rectangle in which the area and width are known:
-- The base area of a rectangular solid in which volume and height are known:
-- The height of a rectangular solid in which volume and base area are known:
12.

How many even digits are there? \qquad

QUIZ, continued

13.
14.
15. Convert the following:
7.48 gallons to \qquad cu. ft.
13.7 tons to \qquad lbs.
$5,000 \mathrm{lbs}$. to \qquad tons
$2 \mathrm{cu} . \mathrm{ft}$. to \qquad gals.
$2 \mathrm{cu} . \mathrm{yds}$. to \qquad cu. ft.
2 sq. ft. to \qquad sq. in.
2 mi . to \qquad feet

QUIZ, continued

16. Using an application rate of 0.33 gals./sq. yd., how many gallons of asphalt are needed to cover 100 sq. yds.?
\qquad (1)
17. A distributor pump discharges 350 gallons of asphalt in 3.5 minutes. What is the rate of discharge?
\qquad (1)
18. Aggregate being used for an asphalt mix loses eight percent of its weight in the dryer -- based on DRY weight. How much does 200 pounds of wet aggregate weigh when it comes out of the dryer? \qquad (1)
19. If 40 lbs . of wet aggregate contains 8 lbs . of water, what is the percent moisture based on wet weight?
\qquad (1) Dry weight? \qquad (1)
20. One cubic foot is what decimal part of a cubic yard? \qquad (1)
21. If the slope ratio is $1: 4.5$ and the horizontal distance is 45 feet, what is the vertical distance?
\qquad (1)
22. If $4.5: 1=X: 5$, what is X ? \qquad (1)

QUIZ. continued

23. A mix design specifies 28.7 bags of cement per 6.5 cubic yards of concrete. How many bags of cement will be required to produce 650 cubic yards of concrete? Round to the nearest whole bag. \qquad (1)
24. A slope has a vertical distance of 7.75^{\prime}. The horizontal distance is 38.75^{\prime}. The slope ratio is
\qquad (1)
25. You check the accuracy of multiplication by \qquad (1)
26. Show seven decimal places in this multiplication answer: 73914
27. Round the final answer to 0.1: Preliminary answer $90.1499+$ Preliminary answer $90.0049=$ final answer \qquad
\qquad (1)
28. The symbols "r" and "\%" represent \qquad and \qquad .
29. Ac. represents \qquad , and S.F. represents \qquad (2)
30. The symbols V, L and W represent \qquad , \qquad and \qquad (3)

QUIZ, continued

31.
32.
33.
34.

$$
9^{2}
$$

\qquad
10^{3}
\qquad (2)

$$
\begin{equation*}
\text { If } A=L W, L= \tag{1}
\end{equation*}
$$

\qquad

If $\mathrm{V}=\mathrm{AH}, \mathrm{H}=$ \qquad (1)

Complete the following tables: (6)
LINEAR MEASURES

Foot	Yard	Mile
12 in .	_ft.	

Square Inch	Square Foot	Square Yard	Acre
1 sq. in.	$\begin{aligned} & 1 \text { sq. ft. } \\ & 144 \text { sq.in. } \end{aligned}$	1 sq. yd. \qquad sq. ft.	_ sq.ft.
	VOLUME MEASURES		
Cubic Inch	Cubic Foot	Cubic Yard	
1 cu . in.	$\begin{aligned} & 1 \mathrm{cu} . \mathrm{ft} . \\ & \quad \mathrm{cu} . \mathrm{in} . \end{aligned}$	$\begin{aligned} & 1 \mathrm{cu} . \mathrm{yd} . \\ & \quad \mathrm{cu} . \mathrm{ft} . \end{aligned}$	

QUIZ, continued

35.

Tons multiplied by pounds per ton will give answers in \qquad (1)
36.

Eight inches expressed in 0.01 foot is \qquad (1)
37. $\quad 0.01$ expressed as a percentage is \qquad (1)
38.
0.50 is how many percent? \qquad (1)

There are 66 answers in the Quiz. Did you get 60 or more right?
If so, you should be able to answer the questions on the final examination without difficulty.

Did you get 59 or less right? You may have studied too fast -- or you may have taken the Quiz too fast. Erase your answers and take the Quiz again in a few days. Study Chapters 3,4 and 5 as necessary to get as least 60 right next time.

ANSWERS TO QUIZ

Page 5-29

1. Avg., π,:
2. Multiply it once by itself
3. Multiply it twice by itself
4. square
5. square
6. cubic
7. linear

Page 5-31

```
13. 211.10, 99.20, 27.33, 0.60
14. }0.508\times0.562\times0.875=0.25
15. 1
    27,400
    2.5
    14.96
    54
    288
    10,560
13. 211.10, \(99.20,27.33,0.60\)
14. \(0.508 \times 0.562 \times 0.875=0.250\)
15. 1
27,400
2.5
14.96
54
10,560
```


Page 5-32

16. 33
17. 100 gals./min.
18. 185.2 lbs .
19. 20.0\%, 25.0\%
20. . 037 C.Y.
21. 10 ft .
22. 22.5
$\mathrm{A}=\mathrm{V} / \mathrm{H}$
$\mathrm{H}=\mathrm{V} / \mathrm{A}$
23. Five

Page 5-30
8. equation
9. done equally to the other side
10. $X=(27.54+33.07) \underline{98.10 / 21.5}$
11. $A=L W$
$V=L W H$
$L=A / W$

Page 5-33
23. 2,870 bags
24. 1:5
25. dividing the answer by the multiplier
26. $0.0073914,0.0074$
27. 180.2
28. radius and percent
29. Acres and square feet
30. Volume, Length, Width

Page 5-34
31. 81 and 1,000
32. A / W
33. V/A
34. 3 ft . and 5,280

9 sq.ft. and 43,560 sq. ft.
$1,728 \mathrm{cu}$. in. and 27 cu . ft.

Page 5-35
35. pounds
36. 0.67 ft .
37. 1\%
38. 50%

CHAPTER SIX

Calculating Areas

CONTENTS

SQUARES, RECTANGLES AND OTHER PARALLELOGRAMS 6-2
TRIANGLES 6-7
TRAPEZOIDS 6-13
CIRCLES 6-15
ELLIPSES 6-21
FILLETS 6-24
HIGHWAY PROBLEMS 6-28
ANSWERS TO PROBLEMS 6-33

6

CALCULATING AREAS

SQUARES, RECTANGLES AND OTHER PARALLELOGRAMS

Each figure above has four sides. All opposite sides are parallel.

AREA CALCULATIONS

Calculating the areas of squares and rectangles was discussed briefly in Chapter Four.

$$
\underline{\text { Area }}=\underline{\text { Length times }} \underline{\text { Width }} \mathrm{A}=\mathrm{L} \mathrm{~W}
$$

Calculating the areas of parallelograms involves one additional step -- finding the height. $\quad A=L H$

Measure the height along a line perpendicular to the length. Multiply length by height to get area. The side a figure rests o n is the BASE. Some persons call this the base length and use a B instead of an L. Then, $A=B H$

The term "perpendicular" means at a right angle: This little box tells you that an angle is $90^{\circ}-$ a right angle. And, the lines that form the angle are perpendicular.

PROBLEMS

1. Calculate the areas shown below:
A.
C.

$B=35.6^{\prime}$
$H=14.6^{\prime}$

Area $=$ sq. ft.

\qquad
Area $=$ \qquad whole number sq. ft.
B.

Area $=$ \qquad sq. ft.

DISCUSSION OF PARALLELOGRAM AREAS

Calculating the areas of squares and rectangles is easy. Calculating the areas of parallelograms is also easy.
Multiply the length of one side by the length of a perpendicular side to get the areas of squares and rectangles.

Multiply the length by the height to get the areas of parallelograms.
Formula: $A=L W$ and $A=L H$

Just be careful when
measuring the heights of parallelograms. Since the opposite sides are always parallel, measure the perpendicular distance from the side used as the length to the opposite.

Both H's are perpendicular distances for this parallelogram.

PROBLEM

2. Calculate the following areas and check your calculations by working backwards. No diagrams are shown.

$$
\begin{array}{llll}
\mathrm{L}=21^{\prime} & \mathrm{W}=9.1^{\prime} & \mathrm{L}=7.6^{\prime} \\
\mathrm{W}=27^{\prime} & \mathrm{L}=10.0^{\prime} & \mathrm{H}=7.2^{\prime} \\
\mathrm{A}=[\text { sq. ft. } & \mathrm{A}= & \text { sq. ft. } & \mathrm{A}=\begin{array}{l}
\text { sq. ft. }
\end{array}
\end{array}
$$

TRIANGLES

CHARACTERISTICS OF TRIANGLES

There are three types of triangles: right, acute and obtuse.
$>$ A right triangle has one 90 degree angle.
$>$ An acute triangle has three interior angles of less than 90 degrees each.
$>$ An obtuse triangle has one interior angle larger than 90 degrees.
$>$ The interior angles of any triangle must add to 180 degrees.
$>$ Any triangle is half of a parallelogram!

RIGHT

Right Triangle $=$ Half of a Rectangle.

ACUTE

Acute Triangle $=$ Half of a Parallelogram.

OBTUSE

Obtuse Triangle $=$ Half of a Parallelogram.

AREA CALCULATIONS

"Average-Base-Height" Method

The area of any triangle is half the area of the parallelogram it would form.
$A=\frac{B H}{2}$ Area equals \underline{B} ase times $\underline{H e i g h t, ~ d i v i d e d ~ b y ~} 2$

Be sure to use the right dimensions for the base and height values! As can be seen in the diagrams above, any line can be selected as a base line -- but visualize the parallelogram accordingly so that you use the proper height value.

"Lengths-of-Sides" Method

The area of any triangle can be calculated by using the formula shown below -- if the lengths of all sides are known!

$$
\text { Area }=\sqrt{S(S-a)(S-b)(S-c)} \quad \ldots . \text { where.... } S=\frac{a+b+c}{2}
$$

The symbol $\sqrt{ }$ means to square root a number.
The symbol "S" represents the sum of the lengths of all sides, divided by 2.
The symbols "a, " "b, " and "c" represent the lengths of the individual sides -- as shown in the diagram.

PROBLEMS

Compute the areas of the following triangles: Calculate to 0.01 (hundredths). Check your calculations.
3.

$$
\begin{aligned}
& B=7.8^{\prime} \\
& H=11.3^{\prime}
\end{aligned}
$$

$$
A=
$$

\qquad sq. ft.

4.

$$
\begin{aligned}
& \mathrm{B}=8.3^{\prime \prime} \\
& \mathrm{H}=5 "
\end{aligned}
$$

$$
A=
$$

\qquad sq. in

5.
$B=18.9^{\prime}$
$H=152^{\prime}$
A = \qquad S. F.

Occasionally, you may have to calculate the area of a triangle when you know only the length of the base and the slopes of two sides:

To calculate the area, first calculate the height -- then use the formula: $A=\frac{B H}{2}$
The height can be calculated with this formula:

$$
H=\frac{B}{\text { Difference between the slopes }}
$$

To find the difference between the slopes, set up each slope as a percent, with B as the vertical dimension. Then subtract the smaller percent from the larger. For example, in the triangle above, the difference between the slopes is $(1 \div 2)-(1 \div 8)=0.5-0.125=0.375$

The height of the triangle above is found like this:
$H=\frac{B}{\text { Difference between the slopes }}$

$$
=\frac{B}{(1 \div 2)-(1 \div 8)}=\frac{0.5^{\prime}}{0.375^{\prime}}=1.333 \mathrm{ft}
$$

Once you know the height the area is calculated:

$$
A=\frac{B H}{2}=\frac{0.5^{\prime} \times 1.333^{\prime}}{2}=\frac{0.667}{2}=0.33 \mathrm{sq} . \mathrm{ft} .
$$

PROBLEM

6. Calculate the area of this shoulder section:

NOTE: Dimensions are vertical and horizontal.

$\mathrm{H}=\ldots$ thousandths
$A=$ \qquad sq. ft.
hundredths

QUIZ

Inches times inches $=$ \qquad inches.

Feet times feet $=$ \qquad feet.

Feet times feet, divided by two = \qquad feet.

Square yards divided by yards = \qquad
The areas of squares and rectangles are found by multiplying \qquad by \qquad .

The areas of parallelograms are found by multiplying \qquad by \qquad -.

The areas of triangles where the lengths of all sides are not known are found by multiplying \qquad by
\qquad and dividing by 2 .

The accuracy of area calculations can be checked by dividing the \qquad by the \qquad to find
\qquad or \qquad -.

Go on to "TRAPEZOIDS"

TRAPEZOIDS

Trapezoids are 4-sided figures -- havng two parallel sides and two non-parallel sides.

CALCULATING AREAS BY PARTS METHOD

Most trapezoids can be broken up into two triangles and a rectangle -- and solved part by part:

of triangle. The area of the above trapezoid can be calculated as follows:

$$
\begin{aligned}
A & =A_{1}+A_{1}+A_{3}=4^{\prime} \times 8^{\prime}+\left[3.712^{\prime} \times 8^{\prime}\right]+\frac{6^{\prime} \times 8^{\prime}}{2} \\
& =16 \text { sq. ft }+96 \text { sq. ft. }+24 \text { sq. } f t .=136 \text { sq. ft. }
\end{aligned}
$$

The area of each of the three parts can be calculated separately and added. $\mathrm{A}=\mathrm{A} 1+\mathrm{A} 2$ $+\mathrm{A} 3=$ Area of triangle + Area of rectangle + Area

CALCULATING AREAS BY AVERAGE-BASE-LENGTH METHOD

The formula for calculating the areas of trapezoids is:

$$
A=\frac{B+b}{2} \times H \quad \text { " } \mathrm{B} \text { " is the long base line, " } \mathrm{b} \text { " is the short one. }
$$

Multiply the height by the average of the two base-line lengths.

$$
B=30^{\prime} \quad b=20^{\prime} \quad H=10^{\prime}
$$

Calculation

$$
\begin{aligned}
& A=\frac{B+b}{2} \times H \\
& A=\frac{30^{\prime}+20^{\prime \prime}}{2} \times 10=25^{\prime} \times 10^{\prime}
\end{aligned}
$$

$$
A=250 \text { sq. ft. }
$$

PROblem

7. Calculate the area of the following trapezoid using the Average-Base-Length Method:

$$
\begin{aligned}
& \mathrm{b}=26.2^{\prime \prime} \\
& B=38.5^{\prime \prime} \\
& H=18.7^{\prime \prime} \\
& A= \\
&
\end{aligned}
$$

8. Calculate the area of the following trapezoid using trapezoid using both the Parts Method and the Average-Base-Length Method.
b $=17.3^{\prime \prime}$
$B=40.1^{\prime \prime}$
H = 21.5"
A $=$ \qquad sq. in.
tenths

CIRCLES

CHARACTERISTICS OF CIRCLES

> The circumference of a circle is the length of the line that makes the circle.
. The diameter of a circle is the straight-line distance across the center of the circle.
> The value of pi-- $\pi-$ is the same for all circles. It is the result of dividing the circumference by the diameter.
> The radius of a circle equals half its diameter.
> The circumference of a circle is equal to the diameter times pi.
> The area of a circle is equal to pitimes the squared length of the radius: $A=\pi r^{2}$
> The inside diameter of a pipe culvert is the longest measurement across the pipe opening.
> The outside diameter is the inside diameter plus twice the thickness of the culvert wall.
> The inside circumference is equal to the inside diameter times pi.
> The outside circumference is equal to the outside diameter times pi

$$
\begin{aligned}
C & =\pi D \\
D & =2 r \\
\text { pi or } \pi & =3.14=\frac{C}{D} \\
r & =\frac{D}{2} \\
A & =\pi r^{2}
\end{aligned}
$$

The course material has been prepared using pi as 3.14 regardless of the degree of accuracy required. When the degree of accuracy for the answer is to 0.01 , the value of pi should be 3.142.

All the problems in this section are based on using pi as 3.14 .

CALCULATING AREAS OF CIRCLES

If the diameter of a circle is 10 inches, what are the circumference and the area?

$$
\begin{aligned}
& C=\pi D=3.14 \times 10^{\prime \prime}=31.4^{\prime \prime} \\
& A=\pi r^{2}=\left(\frac{D}{2} \times \frac{D}{2}\right) \times 3.14=\left(5^{\prime \prime} \times 5^{\prime \prime}\right) \times 3.14=\underline{78.50 \text { sq.in. }}
\end{aligned}
$$

If the circumference of a circle is 62.83 inches, what are its diameter and area?

$$
\begin{aligned}
& C=\pi D, \text { so } D=\frac{C}{\pi}=\frac{62.83^{\prime \prime}}{3.14}=\underline{20 \text { inches }} \\
& A=\pi r^{2} \text { and } r=\frac{D}{2} \text {, so } A=\frac{20^{\prime \prime}}{2} \times \frac{20^{\prime \prime}}{2} \times 3.14 \\
& A=(10 \text { inches })^{2} \times 3.14=314.00 \text { sq. } \mathrm{ft} .
\end{aligned}
$$

If the radius is 4.2 feet, what are the diameter, circumference and area?

$$
\begin{aligned}
& \mathrm{r}=4.2^{\prime} \\
& \mathrm{D}=2 \mathrm{r}=\underline{8.4^{\prime}} \\
& \mathrm{C}=\pi \mathrm{D}=8.4^{\prime} \times 3.14=26.376 \mathrm{ft} .=\underline{26.38 \mathrm{ft}} . \\
& \mathrm{A}=\pi \mathrm{r}^{2}=3.14 \times 4.2 \mathrm{ft} . \times 4.2 \mathrm{ft} .=3.14 \times 17.64 \mathrm{sq} . \mathrm{ft} . \\
& \mathrm{A}=55.3896 \mathrm{sq} . \mathrm{ft} .=\underline{55.39 \mathrm{sq} . \mathrm{ft}} .
\end{aligned}
$$

PROBLEMS

9. Round all the answers to 0.01 (hundredths). Check your calculations by working backwards.

$$
\begin{aligned}
& \mathrm{C}=157.00 \text { feet } \\
& \mathrm{D}=\ldots \quad \mathrm{ft} . \\
& \mathrm{r}=\ldots \quad \mathrm{ft} . \\
& \mathrm{A}=\ldots \quad \text { sq. } \mathrm{ft} .
\end{aligned}
$$

10. $r=16$ inches

$$
\mathrm{D}=\ldots \text { in. }
$$

$C=$ \qquad in.
$A=$ \qquad sq. in.

Right? Go on to "CIRCLE SECTORS AND CIRCLE SEGMENTS". Mistakes? Did you follow the right procedures and make mathematical errors? -- Or are the procedures confusing? If the procedures are difficult review the section on "CIRCLES" again.

CIRCLE SECTORS AND CIRCLE SEGMENTS

Some characteristics of circle sectors and circle segments are itemized below:
NOTE: The term "radii" is the plural of radius.

Circle Sectors

$>$ A sector of a circle is the area between two radii and an arc.
$>$ A arc of a circle is part of the circumference.

Circle Segments

> A segment of a circle is the area between an arc and its chord.
$>$ A chord of a circle is the straight line between the ends of an arc.

Calculating Areas of Circle Sectors

To calculate the area of a circle sector, you must know the radius and the angle formed by the two radii. Then calculate the area using this formula:

Calculating Areas of Circle Segments

Calculating areas of circle segments is easy if you know how to calculate areas of circle sectors. The area of a segment is equal to the area of the sector minus the area of the triangle formed by the two radii and the chord. You can calculate the area of a segment using this formula:

$$
A=\left(\pi r^{2} \times \frac{\text { angle }}{360^{\circ}}\right)-\sqrt{S(S-a)(S-b)(S-c)}
$$

PROBLEMS

11. Find the area of this circle sector:

$$
A=\overline{0.1 \text { (tenths) }} .
$$.sq. ft.

12. Find the area of this circle segment:

$$
A=
$$

\qquad

$$
=
$$ 0.1

Right? Go on to "ELLIPSES". Mistakes? If you are having difficulty review the section on "CIRCLE SECTORS AND CIRCLE SEGMENTS" again.

ELLIPSES

CHARACTERISTICS OF ELLIPSES

Ellipses are oblong circles -- egg-shaped circles. The radii of ellipses vary depending on the measurements made:

NOTE: The term "radii" is the plural of radius.

CALCULATING ELLIPTICAL AREAS

Elliptical areas are calculated by using the formula $A=\pi(R r)$. " R " represents the long radius and " r " the short one.

PROBLEMS

Round your answers to tenths. Check your answers by working backwards.
13.

$$
\begin{aligned}
& R=31.5^{\prime \prime} \\
& r=14.3^{\prime \prime}
\end{aligned}
$$

$A=$ \qquad sq. in.
14.

$$
\begin{aligned}
& R=15.8^{\prime} \\
& r=9.3^{\prime}
\end{aligned}
$$

$$
A=
$$

\qquad sq. ft.

Right? Good! Go on to "FILLETS". Mistakes? Compare your calculations to those on the next page.

Calculations, Problems 13 and 14

13.

$$
\begin{aligned}
\mathrm{R} & =31.5^{\prime \prime} \\
\mathrm{r} & =14.3^{\prime \prime} \\
\mathrm{A} & =\pi(\mathrm{Rr})=3.14\left(31.5^{\prime \prime} \times 14.3^{\prime \prime}\right)=3.14 \times 450.45 \mathrm{sq} . \mathrm{in} . \\
& =1414.4130 \mathrm{sq} . \mathrm{in} .=\underline{1414.4 \mathrm{sq} . \mathrm{in} .} \\
\mathrm{R} & =15.8^{\prime} \\
\mathrm{r} & =9.3^{\prime} \\
\mathrm{A} & =\pi(\mathrm{Rr})=3.14\left(15.8^{\prime} \times 9.3^{\prime}\right)=3.14 \times 146.94 \mathrm{sq} . \mathrm{ft} . \\
& =461.3916 \text { sq. ft. }=\underline{461.4 \mathrm{sq} . \mathrm{ft} .}
\end{aligned}
$$

Checking Calculations

13. $\quad A=1414.4130$ sq. in.

$$
r=14.3 \mathrm{in} .
$$

$$
\mathrm{R}=?
$$

$$
R=\frac{1414.4130 \text { sq. inches }}{3.14} \div 14.3^{\prime \prime}
$$

$$
R=450.45 \text { sq.ft. } \div 14.3^{\prime \prime}=\underline{31.5^{\prime \prime}}
$$

14.

$$
\begin{aligned}
& \mathrm{A}=461.3916 \text { sq.ft. } \\
& \mathrm{R}=15.8 \mathrm{ft} . \\
& \mathrm{r}=\frac{?}{?} \\
& R=\frac{461.3916 \text { sq. feet }}{3.14} \div 15.8^{\prime} \\
& \mathrm{R}=146.94 \text { sq.ft. } \div 15.8^{\prime}=\underline{9.3^{\prime}}
\end{aligned}
$$

Go on to "FILLETS".

FILLETS

"Fill its" is how to pronounce -- fillets. Sometimes you will hear them called SPANDRELS. Fillet areas are leftovers when maximum circle areas are taken from square areas.

CHARACTERISTICS OF 90° FILLETS

$>\quad$ The length of the side of a 90° fillet is equal to the radius of the circle. $r=$ radius of the circle or length of the 90° fillet side
> The length of the side of a fillet is also equal to half the length of the square that could be formed.
$L=$ length of the side of the fillet
$>$ Length equals radius.
L = r
$>$ The area of a fillet $=\frac{(2 L)^{2}-\left(\pi r^{2}\right)}{4}$ or $(2 r)^{2}-\frac{\left(\pi r^{2}\right)}{4}$ or $\frac{(2 L)^{2}-\left(\pi L^{2}\right)}{4}$
$>$ The area of a fillet $=\frac{4 r^{2}-\pi r^{2}}{4}=\frac{(4-3.14) r^{2}}{4}=\frac{0.860 r^{2}}{4}=0.215 r^{2}$
$>$ The area of two fillets $=0.430 r^{2}$-- three fillets $=0.645 r^{2}$-- four fillets $=0.860 r^{2}$.

PROBLEMS

Round the following to 0.01 .
15.

16.

Right? Go on to "USING CONSTANTS IN FILLET AREA CALCULATIONS". Wrong? Go back and review.

USING CONSTANTS IN FILLET AREA CALCULATIONS

Do you remember the fillet constants? We used one at the bottom of the last page. They make fillet calculations easy. We can use this figure and calculate the area of one, then two, then three and finally all four fillets.

The area of ANY FILLET in this figure is

$$
\begin{aligned}
\mathrm{A} & =0.215 \times \mathrm{r}^{2} \\
& =0.215 \times 100 \mathrm{~S} . \mathrm{F} . \\
& =\underline{21.5 \text { S.F. }}
\end{aligned}
$$

Go on to "IRREGULAR FIGURES".

The area of TWO FILLETS is:
$A=0.430 \times r^{2}$
$=0.430 \times 100$ S.F.
$=43.0$ S.F.

The area of THREE FILLETS is:
$A=0.645 \times r^{2}$
$=0.645 \times 100$ S.F.
$=64.5$ S.F.

Finally, the area of FOUR FILLETS is:
$A=0.860 \times r^{2}$
$=0.860 \times 100$ S.F.
$=86.0$ S.F.

IRREGULAR FILLETS

Suppose you run into an elliptical fillet?

How about these?

What about this one?

The shaded area at left has one long side and one short one. You already know the answer! Calculate the area of the rectangle that can be formed, subtract the area of the ellipse, and divide by four.
R = length of long side
$r=$ length of short side

They are done the same way, of course.
$\mathrm{R}=$ length of long side
$r=$ length of short side
One -- Calculate the area of the total rectangle.
Two -- Deduct the areas of the two simulated fillets.
Divide the area as below, of course.
Calculate the four areas separately.
If you run into any fillet areas that involve other than 90° angles, work out ways of making them 90° angles. OR, Subtract the area of the circle or ellipse from the area of the rectangle and multiply that answer by the size of the angle in the fillet.

Go on to "Highway Problems".

HIGHWAY PROBLEMS

17.

Calculate the square yard area of the following driveway entrance: The fillets are 90°.

Area $=$ \qquad sq. yds.
0.1
18.

Calculate the area of this plot.

$\mathrm{H}_{1}=40^{\prime}$
$\mathrm{H}_{2}=8^{\prime}$
A = 10'
$B=35^{\prime}$
C $=20^{\prime}$

Area $=$ \qquad sq. yds. whole number

HIGHWAY PROBLEMS, continued

19. Calculate the area of the shaded portion in this drawing.

$r=5 '$
L = 10'
$h=2 '$
A = \qquad sq.yds.
0.1
20. Find the cross-sectional area of this cut.

$A=$ \qquad square feet

HIGHWAY PROBLEMS, continued

21. Calculate the area of the plot below. To calculate fillet areas, use the method shown on page 6-24. Round to whole number

HIGHWAY PROBLEMS, continued

Problems 22 and 23 refer to the shoulder cross-section below:

22. What are the dimensions of B, C, D, E, F and X? Round your answers to 0.001 .
$B=\ldots \mathrm{ft}$ ft.
$\mathrm{C}=$ \qquad ft .
D $=$ \qquad ft.
E = \qquad ft .
F = \qquad ft .
$X=$ \qquad ft .
23. What is the total cross-section area? Round your answer to 0.01 .
$A=$ \qquad sq.ft.

ANSWERS TO PROBLEMS

Page 6-4		
1.	A.	526.88
B.	56.25	
C.	275	

Page 6-6
2. $\quad 567$
91.0
54.72

Page 6-9
3. 44.07
4. 20.75
5. 143.64

Page 6-11
$6 . \quad 2.618$

Page 6-12
> square
> square
> square
$>$ yards
> length; width
$>$ base; height
$>$ base length; height
> area length width
height
Page 6-14
7. 604.9
8. 617.1

Page 6-17

9.	50.00
	25.00
	$1,962.50$
10.	32.00
	100.48
	803.84

Page 6-20
11. 34.5
12. 20.5

Page 6-22

13. 1414.4
14. 461.4

Page 6-25
15. 10.54
16. $\quad 15.48$

Page 6-28
17. 21.4
18. 124

Page 6-29
19. 17.5
20. 687

Page 6-31
21. 146

Page 6-32
22. B. 7.500
C. 0.156
D. 0.667
E. 0.208

F 0.489
X. 2.134

CHAPTER SEVEN

Calculating Volumes

CONTENTS

BASIC SOLIDS 7-3
PARALLELOGRAM SOLIDS 7-7
TRAPEZOIDAL SOLIDS 7-10
AVERAGE-END-AREA CALCULATIONS 7-13
CYLINDRICAL SOLIDS 7-16
ELLIPTICAL SOLIDS 7-18
FILLET AREA SOLIDS 7-20
CONES 7-24
COMPOUND VOLUMES -- STRUCTURES 7-26
HIGHWAY PROBLEMS 7-30
ANSWERS TO PROBLEMS 7-33

7

CALCULATING VOLUMES

Most persons find volume calculations to be easier than area calculations -- after the needed areas are known. Volume calculations always involve multiplying the area, or an average area, by the length of the figure. The following formulas will be used for volumes:

$$
\left.\begin{array}{cl}
V=A H & \begin{array}{l}
\text { Volume = the Area times the Height (used for simple solids -- objects with parallel end areas of } \\
\text { identical shape and equal area) }
\end{array} \\
V=\left(\frac{A_{1}+A_{2}}{2}\right) H & \begin{array}{l}
\text { Volume = Average Area times the Height (used mainly to approximate volumes) } \\
\text { (Use for earthwork volumes) }
\end{array} \\
V=\left(\frac{\left.A_{1}+A_{2}+\sqrt{A_{1} A_{2}}\right) H}{3}\right) H & \begin{array}{l}
\text { Volume = a sort of Average Area times the Height (used for pyramids, cones and frustrums) }
\end{array} \\
6
\end{array}\right) H \begin{aligned}
& \text { Volume = a sort of Average Area times the Height (used with straight-edged shapes)(Use for } \\
& \text { concrete structure volumes) }
\end{aligned}
$$

"Length" is substituted for "height" when the figure is laying down instead of standing up.

BASIC SOLIDS

CONVERSIONS

As with areas that have to be converted from square inches to square feet, volumes often have to be converted from cubic inches to cubic feet. They sometimes have to be converted to gallons.

As a reminder:
-- One cubic foot $=1,728$ cubic inches
-- One cubic foot $=7.48$ gallons

PROBLEMS

Calculate the volume of the following shapes using the data:

1. Cube:

$$
\begin{aligned}
& A=144 \mathrm{sq} . \mathrm{in} . \\
& V=\ldots \text { cu. in. } \\
& V=_ \text {cu. ft. } \\
& V=\quad \text { gals. }
\end{aligned}
$$

PROBLEMS, continued

2. Cube:

$$
\begin{aligned}
& \mathrm{H}=3 \mathrm{ft} . \\
& \mathrm{A}=\ldots \\
& \mathrm{V}=\ldots \quad \text { sq. } \mathrm{ft} . \\
& \mathrm{V}=\ldots \quad \mathrm{cu} . \mathrm{ft} .
\end{aligned}
$$

3. Rectangular solid:

$$
\begin{aligned}
& \mathrm{A}=400 \mathrm{sq} . \mathrm{ft} . \\
& \mathrm{H}=30 \mathrm{ft} . \\
& \mathrm{V}=\quad \text { cu. } \mathrm{ft} .
\end{aligned}
$$

4. Triangular solid:

$$
\begin{aligned}
& A=72 \text { sq. in. } \\
& L=12 \text { in. } \\
& V=\quad \text { cu. in. } \\
& V=\quad \text { cu. ft. }
\end{aligned}
$$

Right on all four? Go on to Problems 5. Mistakes? Compare your calculations with those on the next two pages.

DISCUSSION OF BASIC VOLUME CALCULATIONS

You will recall from Chapter Five that the volumes of cubic and rectangular solids are calculated by using either of two formulas: in a cube, L, W and H are equal, H must be the square root of 144 square inches! The square
 root of 144 is 12 , so $\mathrm{H}=12$ ".
$V=144$ square inches $\times 12$ inches $=1728$ cubic inches. That's one cubic foot and the equivalent of 7.5 gallons .

Problem 2

Essentially is the same as Problem 1. You know that you are working with a cube, so the length, height and width have to be equal -- and they have to be 3 feet each.

Since A= LW, A has to be $3^{\prime} \times 3$ ' -9 sq.ft.
Since $V=A H, V$ has to be 9 sq. ft. x 3' -- 27 C.F.
Since one cubic yard equals 27 cubic feet, this volume is one cubic yard.

Problem 3 -- Figure Six represents Problem 3.

Since $V=A H$, and $A=400$ square feet, $V=400$ sq. ft. $\times 30 \mathrm{ft} .=12000$ cubic feet.
You don't have to know the L and W values of rectangular solids to calculate their volumes. You need only know (1) that it is a rectangular solid so that the opposite surface areas are
 equal, (2) the area of one surface and (3) the length of the dimension not used in calculating the area.

In Figure Six , for example, you can calculate the area of LH, LW or WH first. If the area is LH , the volume has to be LH x W. If the area is LW, the volume has to be $\mathrm{LW} \times \mathrm{H}$, or if the area is WH , the volume has to be $\mathrm{WH} \times \mathrm{L}$.

Problem 4

As you know, every triangle is equal to half the rectangle it can be used to form. Every triangular solid is equal to half the rectangular solid it can be used to form.

Study Figure Seven. It depicts half of a cube. If you multiplied B times H times L, you would
 get the volume of a cube!

Assume B, H and L are 12 inches each. Then BHL would be $12^{\prime \prime} \times 12^{\prime \prime} \times 12^{\prime \prime}$ or one cubic foot. Since it is a triangular solid instead of a cube, the volume equals one half the value of $B H L$-- or one half the value of AL.

In Problem 4, you know (1) you are working with a triangular solid, and (2) the area of one end is 72 square inches.

Since $V=A L, V=72$ sq. in. $x 12 \mathrm{in} .=864 \mathrm{cu}$. in., and $\frac{864 \mathrm{cu} \text {. inches }}{1,728 \mathrm{cu} . \text { inches } / \mathrm{cu} . \mathrm{ft} .}=0.5 \mathrm{cu} . \mathrm{ft}$.

PARALLELOGRAM SOLIDS

5. The volumes of solids having equal parallelogram end areas are calculated the same way as other solids: $\mathrm{V}=\mathrm{AL}$ or $\mathrm{V}=\mathrm{AH}$. But watch your end-area calculations.
```
L = 12'
W = 10'
H=1.5'
V =
```

\qquad

```
0.01
```


H must be vertical!

Calculation, Problem 5

$$
\begin{aligned}
& V=A L \\
& A=W H=10^{\prime} \times I .5^{\prime}=15 \mathrm{sq} . \mathrm{ft} . \\
& V=15 \text { S.F. } \times 12^{\prime}=180 \mathrm{cu} . \mathrm{ft} .=\underline{6.67 \mathrm{cu} . \mathrm{yd} .}
\end{aligned}
$$

The product of the two adjacent sides, W and H , won't give the area. The area is the product of W and H , which are at right angles to each other.

Have trouble? Study areas of parallelograms again, Chapter Seven. Otherwise, go on to "Problems for Review".

PROBLEMS

Calculate the volumes of these structures -- in cubic yards.
6. \qquad cu. yds.
whole number

7. \qquad cu. yds.

8.
 cu. yds.

Right? Go on to "TRAPEZOIDAL SOLIDS." Wrong? Go back and check.

TRAPEZOIDAL SOLIDS

Trapezoidal solids are three-dimensional trapezoidal figures.

Formula:

$$
\begin{aligned}
& A=\frac{B+b}{\rho} H \\
& V=A L
\end{aligned}
$$

Earlier, you calculated the area of a trapezoid. If both end areas are equal -- the volume calculation is simply
END AREA times LENGTH.
If: $B=50^{\prime}, \mathrm{b}=25^{\prime}, \mathrm{H}=10^{\prime}, \mathrm{L}=30^{\prime}$

$$
\begin{array}{rlrl}
\text { END AREA } & =\frac{B+b}{2} \mathrm{H} \quad \text { and } \quad V & =\mathrm{AL} \\
& =\frac{50^{\prime}+25^{\prime}}{2} 10^{\prime} & =375 \mathrm{sq} . \mathrm{ft} . \times 30^{\prime}=11,250 \mathrm{cu} . \mathrm{ft} . \\
& =375 \mathrm{sq.} \mathrm{ft} . & & =416.67 \mathrm{cu} . \mathrm{yds}
\end{array}
$$

PROBLEMS

Compute the volumes of each of the following trapezoidal solids -- in cubic yards. Round to 0.01 . Assume the opposing end areas are equal.
9.
$V=$ \qquad cu. yds.

Discussion -- Problems 9 and 10

In calculating volumes of trapezoidal solids, multiply the END AREA times the LENGTH. That's all!
END AREA $=\frac{B+b}{2} H$
VOLUME $=$ END AREA $\times L$

Problem 9

$B=19^{\prime}, b=6 ', H=4^{\prime}$, and $L=42^{\prime}$

$$
\begin{aligned}
\text { VOLUME } & =\left(\frac{19^{\prime}+6^{\prime}}{2} \times 4^{\prime}\right) \times 42^{\prime} \\
& =\left(12.5^{\prime} \times 4^{\prime}\right) \times 42^{\prime} \\
& =(50.0 \text { sq. ft. }) \times 42^{\prime}=2,100 \mathrm{cu} . \mathrm{ft} .=77.78 \mathrm{cu} . \mathrm{yds} .
\end{aligned}
$$

Problem 10

$B=30^{\prime}, b=18^{\prime}, H=12^{\prime}$, and $L=40^{\prime}$
VOLUME $=\left(\frac{30^{\prime}+18^{\prime}}{2} \times 12^{\prime}\right) \times 40^{\prime}$
$=\left(24^{\prime} \times 12^{\prime}\right) \times 40^{\prime}$
$=(288 \mathrm{sq} . \mathrm{ft}.) \times 40^{\prime}=11,520 \mathrm{cu} . \mathrm{ft} .=426.67 \mathrm{cu} . \mathrm{yds}$.

Go on to the next page.

AVERAGE-END-AREA CALCULATIONS

The volumes of solids having different-sized end areas are calculated by multiplying the average of the two end areas by the length.

The volume of Figure Eight is calculated with the formula:

NOTE: This formula is exact only in one case. Usually, it gives only approximate answers.

PROBLEM

11. Assume the data below apply to Figure Eight. What is the volume of Figure Eight?

$$
\begin{aligned}
& \mathrm{A}_{1}=50 \mathrm{~S} . \mathrm{F} . \\
& \mathrm{A}_{2}=150 \mathrm{~S} . \mathrm{F} . \\
& \mathrm{L}=42 \mathrm{ft} \\
& \mathrm{~V}=\quad \mathrm{cu} . \\
&
\end{aligned}
$$

Go to Problem 12

PROBLEM

12. Calculate the average end area and the volume:

Average end area = \qquad sq. ft.
0.01 .01

Volume $=$ \qquad cu. yds.
0.1

Right? Study "CYLINDRICAL SOLIDS". Mistakes? Compare your work to the calculations on the next page.

Calculations, Problems 11 and 12

The only new calculations to be made are the averages -- and you have done them before. The calculation information is shown below only so that you can check your own calculations quickly. You can always check the accuracy of your own work by working each calculation backwards.

Problem 11

$$
V=\frac{A_{1}+A_{2}}{2} L=\frac{50 \text { S.F. }+150 \text { S.F. }}{2} \times 42 \mathrm{ft} .=100 \text { S.F. } \times 42 \mathrm{ft} .=4,200 \mathrm{cu} . \mathrm{ft} .
$$

Problem 12

$$
\begin{aligned}
& \mathrm{A}=\frac{\mathrm{B}+\mathrm{b}}{2} \mathrm{H} \\
& \mathrm{~A}_{1}=\frac{25^{\prime}+15^{\prime}}{2} \times 8^{\prime}=20^{\prime} \times 8^{\prime}=160 \text { S.F. } \\
& \mathrm{A}_{2}=\frac{37.5^{\prime}+23.9^{\prime}}{2} \times 9.6^{\prime}=30.7^{\prime} \times 9.6^{\prime}=294.72 \text { S.F. }
\end{aligned}
$$

Average End Area $=\frac{\mathrm{A}_{1}+\mathrm{A}_{2}}{2}=\frac{160 \text { S.F. }+294.72 \text { S.F. }}{2}=\frac{454.72 \text { S.F. }}{2}=227.36 \mathrm{~S} . \mathrm{F}$.

$$
\mathrm{V}=227.36 \text { S.F. } \times 43.5 \mathrm{ft} .=9,890.16 \text { C.F. }=366.3 \text { cubic yards }
$$

Go on to "CYLINDRICAL SOLIDS".

CYLINDRICAL SOLIDS

PROBLEMS

Determine the volumes of these cylinders in cubic yards. Round to 0.1 .
13.
$V=$ \qquad C.Y.
14.
$V=$ \qquad C.Y.

Calculations, Problems 13 and 14

The volumes of circular columns having equal end areas are based on the formula: $\mathrm{V}=\mathrm{AH}$. You have to be able to calculate the areas of course.

Problem 13

The available data: $\quad \mathrm{D}=3^{\prime}, \mathrm{H}=9^{\prime}$
The formula: $\quad V=A H$, so $V=A \times 9 \mathrm{ft}$. What is the value of A ?

$$
\begin{aligned}
& \mathrm{A}=\pi \mathrm{r}^{2}, \text { and } \mathrm{r}=\frac{\mathrm{D}}{2}=\frac{3^{\prime}}{2}=1.5 \mathrm{ft} . \\
& \mathrm{A}=3.142\left(1.5^{\prime} \times 1.5^{\prime}\right)=3.14 \times 2.25 \mathrm{sq} . \mathrm{ft} .=7.07 \mathrm{sq} . \mathrm{ft} \\
& \mathrm{~V}=7.07 \text { sq. ft. } \times 9 \mathrm{ft} .=63.63 \mathrm{cu} . \mathrm{ft} .=2.4 \mathrm{cu} . \mathrm{yd} .
\end{aligned}
$$

Problem 14

The available data:

$$
\mathrm{D}=15^{\prime \prime} \text { or } 1.25 \mathrm{ft} ., \mathrm{H}=32 \mathrm{ft} .
$$

The formula: $\quad V=A H$, but what is the value of A ?

$$
\begin{aligned}
& \mathrm{A}=\pi \mathrm{r}^{2}, \text { and } \mathrm{r}=\frac{\mathrm{D}}{2}=\frac{1.25^{\prime}}{2}=0.625 \mathrm{ft} . \\
& \mathrm{A}=3.142\left(0.625^{\prime} \times 0.625^{\prime}\right)=3.142 \times 0.391 \mathrm{sq} . \mathrm{ft} .=1.23 \mathrm{sq} . \mathrm{ft} . \\
& \mathrm{V}=1.23 \text { sq. ft. } \times 32 \mathrm{ft} .=39.36 \mathrm{cu} . \mathrm{ft} .=1.5 \mathrm{cu} . \mathrm{yd} .
\end{aligned}
$$

ELLIPTICAL SOLIDS

PROBLEMS

15.

16

$$
\begin{aligned}
& \mathrm{V}=\frac{0.1}{} \text { cu. ft. } \\
& \mathrm{V}=\varlimsup_{\text {whole number }} \text { gals. }
\end{aligned}
$$

Calculations. Problems 15 and 16

As with cylinders having circular end areas, the volumes of cylinders with equal elliptical end areas are calculated by multiplying the area of one end by the height or length of the cylinder.

Problem 15

As with cylinders having circular end areas, the volumes of cylinders with equal elliptical end areas are calculated by multiplying the area of one end by the height or length of the cylinder.

The available data:

$$
R=4^{\prime}, r=2^{\prime}, L=8^{\prime}
$$

The formula: $\quad V=A L$ and $A=\pi(R r)$

$$
\text { So, } \quad \begin{aligned}
V & =\pi(R r) \times L=\pi\left(4^{\prime} \times 2^{\prime}\right) \times 8^{\prime} \\
V & =3.14 \times(8 \text { sq. ft. }) \times 8^{\prime}=200.96 \mathrm{cu} . \mathrm{ft} . \\
& \\
\text { Volume } & =201.0 \text { cu. ft. } \times 7.5 \text { gals. per cu. ft. } \\
& =1,507.5 \text { gals. }=1,508 \text { gals. }
\end{aligned}
$$

Problem 16

The available data: $D=10^{\prime}, \mathrm{d}=6^{\prime}, \mathrm{L}=25^{\prime}$
The formula : $\quad V=A L, A=\pi(R r), R=\frac{D}{2}$ and $r=\frac{d}{2}$
So, $\quad V=\pi(R r) \times L=\pi\left(5^{\prime} \times 3^{\prime}\right) \times 25^{\prime}$
$\mathrm{V}=3.14 \times(15 \mathrm{sq} . \mathrm{ft}.) \times 25^{\prime}=1,177.5 \mathrm{cu} . \mathrm{ft}$.
Volume $=1,177.5 \mathrm{cu} . \mathrm{ft} . \times 7.5$ gals. per cu. ft.

$$
=8,831.25 \text { gals. }=8,831 \text { gals } .
$$

FILLET AREA SOLIDS

PROBLEM

17.

Calculations, Problem 17

As with cylinders, the volumes of fillet areas are calculated by multiplying end areas times heights. In Problem 17 the fillet area is not identified separately. The volume of the object includes the volume of the fillet area plus the volumes of the rectangular solids.

The shaded area is the fillet area. It is identified here as A_{1}. Areas A_{2} and A_{3} are rectangles. The formula is $V=\left(A_{1}+A_{2}+A_{3}\right) L$

Remember these characteristics of fillets:
The length of the side equals the length of the radius of the circle that would be formed. The length of the side equals half the length of the square that would be formed. The area equals one-fourth the "area of the square minus the area of the circle".

The available data: $\quad r=5 ", L=36 ", H=9 \prime \prime$, Width of $A_{2}=4 \prime$ and Height of $A_{3}=4 \prime \prime$
As you can see, we have more data than we need. We could get the height of the solid or the widths of A_{2} and A_{3} if either the height or the two widths were unknown.

$$
\begin{array}{ll}
\text { But, } & V=\left(A_{1}+A_{2}+A_{3}\right) L \\
\text { And, } & A_{1}=\frac{(2 r)^{2}-\pi r^{2}}{4}=\frac{[(2)(5)]^{2}-\pi(5)^{2}}{4}=\frac{100 \text { sq. in. }-78.50 \text { sq. in. }}{4}=5.375 \mathrm{sq.} \text { in. } \\
& A_{2}=4^{\prime \prime} \times 9^{\prime \prime}=36 \text { sq. in. } \quad A_{3}=4^{\prime \prime} \times 5^{\prime \prime}=20 \mathrm{sq.} \mathrm{in.}
\end{array}
$$

So, $\quad V=(5.375$ sq. in. +36 sq. in. +20 sq. in. $) \times 36 "$

$$
=61.375 \text { sq. in. } x 36 "=2,209.500 \mathrm{cu} . \text { in. }=1.28 \mathrm{cu} . \mathrm{ft} .
$$

Go on to "QUIZ ON SIMPLE SOLIDS".

QUIZ ON SIMPLE SOLIDS

All solids having equal end areas can be thought of as simple solids -- because their volumes are equal to one area times height or length.

The QUIZ summarizes certain area and volume characteristics of simple solids. See if you can score 85% or better.

1. V of cube $=729 \mathrm{cu} . \mathrm{ft} . \mathrm{A}=81 \mathrm{sq} . \mathrm{ft} . \mathrm{H}=$ \qquad
2. The end area of a parallelogram-shaped solid $=200 \mathrm{sq}$. ft. and Volume $=20,000 \mathrm{cu}$. ft. Length = \qquad
3. One end area and the height of a uniform cylinder are known. What is the formula for volume? \qquad
4. The end area and length of a trapezoid-shaped solid are known. What is the formula for volume?
5. The end area and length of an irregularly-shaped solid are known. The opposite end areas are equal. What is the formula for volume? \qquad
6. The end area of a fillet-shaped solid and the length are known. The two end areas are equal. What is the formula for volume? \qquad

QUIZ, continued

7. What are two formulas for the volume of a cube? \qquad and \qquad
8. \quad A cubic foot $=$ \qquad cu. in.
9. A cubic yard $=$ \qquad $\mathrm{cu} . \mathrm{ft}$.
10. \quad A cubic foot $=$ \qquad gals.
11. \quad A square foot $=$ \qquad sq. in.
12. \quad A square yard $=$ \qquad sq. ft.

There are 13 possible correct answers. Did you get at least 11 right? Good. Keep going in this chapter.
Did you get three or four wrong? Study them again. Did you know the right answers but make mistakes in putting them down? If so, keep going. If not, you probably should study some of the previous sections that are giving you difficulty.

CONES

All cones are 33% the size of the cylinders they would make.

PROBLEM
13. Using the formula $\mathrm{V}=\mathrm{A}(\mathrm{H} / 3)$, calculate the volume of this cone:

```
H=12 ft.
```

$\mathrm{r}=5 \mathrm{ft}$.

$\mathrm{V}=$ \qquad cu. ft.
0.01

Right? Simple, aren't they? Study the section titled CONES calculations for Problem 18 on the next page. Mistake? Study the calculations for Problem 18 on the next page.

Calculations, Problem 13

$$
\begin{array}{ll}
A & =\pi r^{2}=3.14\left(5^{\prime} \times 5^{\prime}\right)=3.14 \times 25 \text { sq. ft. }=78.50 \text { sq. ft. } \\
V & =A(H / 3) \\
V & =78.50 \text { sq. ft. } \times\left(12^{\prime} / 3\right)=78.50 \text { sq. ft. } \times 4^{\prime}=314.00 \mathrm{cu} . \mathrm{ft} .
\end{array}
$$

Try the next two problems.

PROBLEMS

14.

$$
\mathrm{V}=\int_{\text {tenths }} \mathrm{cu} . \mathrm{in} .
$$

15.
$\mathrm{V}=$ \qquad cu. in. tenths

COMPOUND VOLUMES -- STRUCTURES

Some compound volumes are sketched below:

Compound volume calculations can be divided into different series of separate calculations. Total volumes are the result of adding all the part volumes.

PROBLEM

16. The compound figure below can be divided into four solids: three triangular solids -- A, B and C -- and one rectangular solid -- D. Calculate the volume.

$V=$ \qquad cu. yds.
0.1

Calculations, Problem 16

```
Volume of \(A=\) Area of \(A \times\) Length \(=\frac{2^{\prime} \times 8^{\prime}}{2} \times 50^{\prime}=400 \mathrm{cu} . \mathrm{ft}\).
Volume of \(B=\) Area of \(B \times\) Length \(=\frac{2^{\prime} \times 10^{\prime}}{2} \times 50^{\prime}=500 \mathrm{cu} . \mathrm{ft}\).
Volume of \(C=\) Area of \(C \times\) Length \(=\frac{6^{\prime} \times 8^{\prime}}{2} \times 50^{\prime}=1,200 \mathrm{cu} . \mathrm{ft}\).
Volume of \(D=\) Length \(x\) Width \(\times\) Height \(=10 ' \times 8\) ' \(\times 50\) ' \(=4,000 \mathrm{cu} . \mathrm{ft}\).
Total Volume \(=\) Volumes of : \(\mathrm{A}+\mathrm{B}+\mathrm{C}+\mathrm{D}\)
    \(=400 \mathrm{cu} . \mathrm{ft} .+500 \mathrm{cu} . \mathrm{ft} .+1,200 \mathrm{cu} . \mathrm{ft} .+4,000 \mathrm{cu} . \mathrm{ft} .=6,100 \mathrm{cu} . \mathrm{ft}\).
    \(=225.9\) cu.yds.
```

17. Calculate the volume of this bridge bent.

$$
V=\frac{}{0.01} \text { cu. yds. }
$$

PROBLEM

Right? Try Problem 18. Wrong? Compare your calculations to those on the next page.

Calculations. Problem 17

The bent is composed of a cylinder and a rectangular solid.

$$
\begin{aligned}
A=\pi r^{2} & =3.14 \times(2.5 \mathrm{ft} .)^{2} \\
& =3.14 \times 6.25 \mathrm{sq} . \mathrm{ft} .=19.625 \mathrm{sq} . \mathrm{ft} \\
\mathrm{~V}=\mathrm{AH} & =19.625 \mathrm{sq} . \mathrm{ft} . \times 48 \mathrm{ft} . \\
& =942.000 \mathrm{cu} . \mathrm{ft}
\end{aligned}
$$

$V=L W H=13 \mathrm{ft} . \times 13 \mathrm{ft} . \times 4 \mathrm{ft} .=676 \mathrm{cu} . \mathrm{ft}$.

Volume of bent $=$ Volume of cylinder + Volume of rectangular solid
Volume of bent $=942.000$ C.F. $+676 \mathrm{cu} . \mathrm{ft} .=1,618 \mathrm{cu} . \mathrm{ft}$.
$=59.93 \mathrm{cu} . \mathrm{yd}$.

HIGHWAY PROBLEMS

18. A concrete footing must be poured over 10 piles. How many cubic yards of concrete will be needed?

$$
V=\frac{}{0.01} \text { cu. yds. }
$$

19. Compute the volume of this bridge pier.

$V=$ \qquad cu. yds.

HIGHWAY PROBLEMS, continued

20. How many square yards of concrete will be needed to pave 40 ft of this ditch?

Ditch surface area $=$ \qquad sq. yds .
whole number

ANSWERS TO PROBLEMS

Page 7-3	Page 7-14	Page 7-23
1. 1728	12. 227.36	7. $L \times L \times L$ and L^{3}
1	366.3	8. 1,728
7.5		9.27
	Page 7-16	10. 7.5
Page 7-4	13. 2.4	11. 144
2. 9	14. 1.5	12. 9
27		
1	Page 7-18	Page 7-24
3. 12,000	15. 201.0	13. 314
4. 864	1508	
0.5	16. 1177.5	Page 7-25
	8831	14. 60.8
Page 7-7		15. 73.0
5. 6.67	Page 7-20	
	17. 1.28	Page 7-27
Page 7-9		16. 225.9
6.12	Page 7-22	
7. 4.25	1. 9 ft .	Page 7-28
8. 0.13	2. 100 ft . 3. $V=A H$	17. 59.93
Page 7-11	4. $\quad \mathrm{V}=\mathrm{AL}$	Page 7-30
9. 77.78	5. $\quad V=A L$	18. 6.42
10. 426.67	6. $\quad V=A L$	
		Page 7-31
Page 7-13		19. 41.86
11. 4,200		
		Page 7-32
		20. 33

CHAPTER EIGHT

Highway Problems

CONTENTS

HIGHWAY PROBLEMS 8-2
ANSWERS TO PROBLEMS 8-23

8

HIGHWAY PROBLEMS

This chapter includes problems and calculations only. Work as many as you like but do those most difficult for you. Check your answers by working backwards before comparing your calculations to those at the end of the chapter.

1. Calculate the cubic yards of granular materials placed below:

$$
V=\varlimsup_{\text {whole number }} \text { cubic yards }
$$

HIGHWAY PROBLEMS, continued

2. What is the volume of this truck body when the hoist box and side boards are in place?

$$
\mathrm{V}=\ldots \mathrm{cu} . \mathrm{ft} .
$$

HIGHWAY PROBLEMS, continued

3. If a sand sample contains 4.6% moisture -- based on the dry weight, how much additional wet sand should be added to an existing 1,300-pound load -- to yield 1,300 pounds of dry sand?
4. Solve for H .
```
\(\mathrm{V}=0.33\left(\mathrm{~A}_{1}+\mathrm{A}_{2}+\sqrt{A_{1} x A_{2}}\right) \mathrm{H}\)
\(\mathrm{V}=458.4 \mathrm{cu} . \mathrm{ft}\).
\(r_{1}=3.5^{\prime}\)
\(r_{2}=5^{\prime}\)
\(\mathrm{H}=\)
``` \(\qquad\)
``` ft .
0.1
```


HIGHWAY PROBLEMS, continued

5. The circumference of a pipe is $47.1^{\prime \prime}$. What is the diameter? D = \qquad inches
whole number

6. How many feet of reinforcement steel rods are required for the slab below?

All rods are spaced 9 " center-to-center. $\# 5$ rod $=1.043 \mathrm{lbs} . / \mathrm{ft}$. How many total pounds of $\# 5$ rods are needed? All rods are spaced 9" center-to-center. Rod $=1.043 \mathrm{lbs} . / \mathrm{ft}$. How many total pounds of rods are needed?

Total feet $=$ \qquad ft .

Total weight $=$ \qquad lbs. lbs.

HIGHWAY PROBLEMS, continued

7. If $D=12.35^{\prime}$

$$
C=
$$

\qquad ft.
0.1

C = Circumference
D = Diameter
8. If $\mathrm{C}=192.35^{\prime}$
$D=$ \qquad ft .

C = Circumference
D = Diameter

HIGHWAY PROBLEMS, continued

9. What is the average end area?

Average end area $=$ \qquad sq. ft.
10. Calculate the average end area in square feet. Then compute the volume of cubic meters cubic yards.

Average end area $=$ \qquad sq. ft.
$V=$ \qquad cubic yards

HIGHWAY PROBLEMS, continued

11. If you excavate from Station $200+54$ to $201+36$, forty feet wide and one foot below subgrade, how many cubic yards will be removed below subgrade?
$\mathrm{V}=$ \qquad cubic yards
whole number
12. How many cubic yards of concrete are needed per foot?
$\mathrm{V}=$ \qquad cubic yard concrete/linear ft.

HIGHWAY PROBLEMS, continued

13. How many yards of concrete do you need to pour this cantilever retaining wall? It will be 0.071 mi . long. A 6" perforated pipe covered by select materials will be placed along the entire length of the wall. How long will the pipe be in feet?

HIGHWAY PROBLEMS, continued

13. Calculate the volume of portland cement concrete used to construct the retaining wall shown in the drawings below:

Plan view

Answer = \qquad cubic yards
0.01

HIGHWAY PROBLEMS, continued

Workspace For Problem 14

HIGHWAY PROBLEMS, continued
15. Compute the cubic yards of concrete needed for the barrels in this box culvert:

$V=$ \qquad cubic yards

HIGHWAY PROBLEMS, continued

Workspace For Problem 15

HIGHWAY PROBLEMS, continued

16. A city intersection is being improved. The shaded area is pavement that must be removed. How many square yards of pavement must be removed?

$A=$ \qquad square yards
whole number

HIGHWAY PROBLEMS, continued

17. What is the safe bearing value f the timber piling driven according to these data?
$\mathrm{E}=$ Energy blow of hammer $=17.6$ foot-tons

$\mathrm{S}=$| Average penetration per blow |
| :--- |
| recorded for the last 10 blows |

$\mathrm{R}=0.29$ inches
$\mathrm{P}=$ Safe bearing value in tons $=$ Weight of pile

Customary Units Equation:

$$
R=\frac{2 E}{S+0.1+0.001 P}
$$

$$
R=\frac{0.1}{} \text { tons }
$$

0.1

HIGHWAY PROBLEMS, continued

18. Calculate the number of cubic yards of concrete needed for the structure shown below:

$V=$ \qquad cubic yards
0.1

HIGHWAY PROBLEMS, continued

Workspace For Problem 18

HIGHWAY PROBLEMS, continued

19. How many tons of dry fertilizer is needed to cover a strip 80 feet wide and 0.75 miles long if the rate of application is 875 pounds per acre?

Fertilizer = \qquad Tons
0.1
20. A tank truck weighs 5 tons empty. Loaded, it weighs 14.3 tons. How much water is it carrying? One m. gallon of water weighs 8.3 pounds.

Water = \qquad gallons
0.1

HIGHWAY PROBLEMS, continued
21. Find the number of acres in the plot of land below.

$$
A=\ldots \text { acres }
$$

HIGHWAY PROBLEMS, continued

22. How many pounds of grass seed are needed to cover the shaded areas in the sketch below? Seed is normally applied at 66 lbs . of seed per acre.

Grass seed $=\underline{\text { whole number }}$ lbs.

HIGHWAY PROBLEMS, continued

23. Calculate the number of cubic yards of concrete needed to construct the concrete bridge column shown below.

HIGHWAY PROBLEMS, continued

24. Calculate the actual quantities of sand, gravel, water and cement required for cubic yard of concrete. One bag of cement yields 0.16 cubic yards of concrete. 500 g of wet sand weigh 480 g when dried. $1,000 \mathrm{~g}$ of wet gravel weigh 990 g when dried. The quantities for a one-bag batch are shown below.

Cement	$=94 \mathrm{lbs}$.
Sand	$=160 \mathrm{lbs}$. dry
Gravel	$=334 \mathrm{lbs}$. dry
Water	$=5.0$ gals.

Cement	whole number ${ }^{\text {lbs }}$
Sand	
	whole number
Gravel	
	whole number
Water	

ANSWER TO QUESTIONS

Page 8-2	Page 8-9	Page 8-20
1. 783	13. 45.333	22. 8,758
	374.9	
Page 8-3	629.42	Page 8-21
2. 274.8		23. 2.06
	Page 8-10	
Page 8-4	14. 188.38	Page 8-22
3. 59.8		24. 588
	Page 8-12	1,050
Page 8-5	15. 64.05	2,125
5. 15		31.5
6. $1,447.5$	Page 8-14	
	16. 5	
Page 8-6		
7. 38.8	Page 8-15	
8. 61.26	17. 61.8	
Page 8-7	Page 8-16	
9. 15.5	18. 90.3	
10. 13.0		
7.2	Page 8-18	
	19. 3.2	
Page 8-8	20. 2.2	
11. 121		
12. 1.16	Page 8-19	
	20. 143.310	

CHAPTER NINE

Quiz

There are 43 questions in the following quiz. You probably won't get them all right the first time -- unless you learned much more than you were expected to.

Try for 85 percent. That would be 37 right answers. If you make it, you will have no difficulty with the qualification examination. There are no "reversed questions" in that examination. Everything is straightforward, based on practical inspection problems.

Some of the following questions are reversed -- to make the quiz more interesting and to give you a better understanding of the relationships of measurements to areas and areas to volumes.

Use a scratch pad to help you "think through" some of the questions. Some of your answers will be expressed differently than those following. Count your answers right if the meanings are the same.

9

QUIZ

1. If an answer is needed to 0.1 (tenths) of a square yard, preliminary calculations are rounded to \qquad .
2. Round this number to 0.1 (tenths): 2.3509 \qquad
3. Round this number to 0.01 (hundredths): 21.6666 \qquad
4. If you were calculating for a final answer in 0.1 (tenths), how would you use this number: 21.6666 Select one below.
A. 21.66
B. 21.667
C. 21.666
D. 21.67
5. If the area were the length times the height, what formula would you use for determining the height from the area and length? \qquad

QUIZ, continued

6. If $A=B H / 2$ what is H when you know B and A ?
7. $\frac{\text { cubic yards }}{\text { yards }}=$ yards
8. square feet \times feet $=$ \qquad
9. square feet \div feet $=$ \qquad
10. Feet x inches per foot $=$ \qquad
11. $\frac{B+b}{2} H$ is the formula for \qquad
12. $\frac{\mathrm{BH}}{2}+\mathrm{LH}+\frac{\mathrm{BH}}{2}$ would give you what? \qquad
13. $2 r=$ \qquad
14. $\pi \mathrm{D}=$ \qquad

QUIZ, continued

15. $\pi r^{2}=$
16. $A / r^{2}=$ \qquad
17. $\pi=$ \qquad
18. $\pi r^{2} \mathrm{H}$ is the formula for \qquad
19. The area of a circle is calculated by what formula? \qquad
20. The area of a 90° fillet is calculated by what formula? \qquad
21. The volume of a 90° fillet is the area times the \qquad .
22. $(\pi \mathrm{Rr}) \mathrm{H}$ is the formula for \qquad .
23. $\frac{A_{1}+A_{2}}{2} L$ is the formula for \qquad .

QUIZ, continued

24. What is the square root of 1.44 ? \qquad
25. What is the square root of 14.4 ? \qquad
26. One cubic foot $=$ \qquad cu. in.
27. One cubic yard $=$ \qquad $\mathrm{cu} . \mathrm{ft}$.
28. A cylinder containing 750.0 gallons has a capacity of \qquad cubic feet.
29. L^{3} is the formula for \qquad .
30. $L^{3} / 2$ is the formula for \qquad .
31. The height of a parallelogram is the \qquad distance between one base line and the other.
32. The area of a parallelogram is calculated by what formula? \qquad

QUIZ, continued

33. The volume of a solid parallelogram is the area times the \qquad .
34. $\quad\left(\frac{B+b}{2} H\right) L$, would give you what? \qquad
35. To calculate the areas of the trapezoids, first divide the figures into \qquad and \qquad .
36. A right angle has how many degrees? \qquad
37. A circle has how many degrees? \qquad
38. What percent of 68.4 is 27.36 ? \qquad
39. What is the value of R when this equation is solved? (NOTE: Round to tenths)
$R=\frac{2(12.1)}{0.32+0.1}$
$R=$ \qquad

QUIZ, continued

40. If you have two cross-section end areas, how do you find the volume?
41. If the end area of a cone is 100 sq . ft . and the height is 12 ft ., what is its volume?
42. If the volume of half a cone is $1,200 \mathrm{cu}$. ft ., and the height is 12 ft ., what is the area of its base?
43. $(\mathrm{LWH})-\left(\pi r^{2} \mathrm{~W}\right)$ is the formula for what?

ANSWERS TO QUIZ

Page $\mathbf{9 - 2}$	
1.	0.01 (Hundredths)
2.	2.4
3.	21.67
4	21.67
5	$\mathrm{H}=\mathrm{A} / \mathrm{L}$

Page 9-3

6. $H=2 A / B$
7. Square Yards
8. cubic feet
9. Feet
10. Inches
11. Trapezoid areas
12. Area of a trapezoid
13. Diameter of a circle
14. Circumference of a circle

Page 9-4

15. Area of a circle
16. $\quad 3.14$ (π)
17. 3.14
18. Volume of a cylinder
19. $\quad \mathrm{A}=\pi \mathrm{r}^{2}$
20. $A=\frac{(2 r)^{2}-\left(\pi r^{2}\right)}{4}$
21. Height or length
22. Volume of an elliptical
cylinder
23. average end areas

Page 9-5
$24 . \quad 1.2$
25. $\quad 3.79$
26. 1,728
27. 27
28. 100
29. Volume of a cube
30. Volume of half a cube
31. Vertical or perpendicular
32. $\mathrm{A}=\mathrm{BH}$

Page 9-6

33. Length, height or depth
34. Volumes of a trapezoidal solid
35. Rectangles and triangles
36. 90
37. 360
38. 40%
39. 57.6

Page 9-7

40. Multiply the average of the end areas by the length
41. 400 cubic feet
42. 600 square feet
43. Volume of a rectangular solid with a cylindrical opening

Did you get 37 or more right? Very good! Some of those questions are hard to interpret. Check the questions on which you made mistakes to see if you should review any of the sections in the course, or if you just (1) misunderstood the questions or (2) were not fully careful in writing your answers.

HOW ABOUT THAT?

You have completed

CONSTRUCTION MATH!

We hope it proved to be beneficial to you.

Keep this book as your personal property. Use it for review and reference purposes.

CONVERSION FACTORS

TYPE	CUSTOMARY UNIT	MULTIPLY BY	METRIC EQUIVALENT
LENGTH	inches	25.400000	mm
	inches	0.025400	m
	feet	0.304800	m
	yards	0.914400	m
	miles	1609.344000	m
	miles	1.609344	km
AREA	square inches	645.160000	mm^{2}
	square feet	0.092903	m^{2}
	square yard	0.836127	m^{2}
	acres	4046.873000	m^{2}
	square miles	2.589988	km^{2}
	hectare	10000	m^{2}
VOLUME	cubic feet	0.028317	m^{3}
	cubic yard	0.764555	m^{3}
	gallon (fluid)	3.785412	L

TYPE	CUSTOMARY UNIT	MULTIPLY BY	METRIC EQUIVALENT
Mass	pound	0.453592	kg
	ton	907.184700	kg
	ton	0.907184700	metric ton or t
	ounce	0.028350	kg
Force	pound (force)	4.448222	N
	ton-force	8.896443	N
Stress	pound/inch ${ }^{2}(\mathrm{psi})$	6894.757000	Pa
	kips / in ${ }^{2}$	6.894757	$\mathrm{~N} / \mathrm{mm}{ }^{2}$
Velocity	fps	0.304800	$\mathrm{~m} / \mathrm{s}$
	mph	0.447040	$\mathrm{~m} / \mathrm{s}$
	mph	1.609344	$\mathrm{~km} / \mathrm{h}$

METRIC (INCH-POUND) TERMS, SYMBOLS (ABBREVIATIONS) AND EXAMPLES

Term	Symbol (Abbreviation)	Example
centimeter (inch)	cm (in.)	3 cm or 0.02 cm (1.18 in. $78.7410^{-6} \mathrm{in}$.)
millimeter (Inches)	mm (in. or ")	50.8 mm (2 in. or 2")
meter (feet)	m (ft. or _)	0.6096 m (2 ft. or 2')
meter (yards)	m (yds.)	4.572 m (5 yds.)
kilometer (Miles)	km (mi.)	16.09 km (10 mi .)
kilogram (Pounds)	kg (lbs.)	78.70 kg (173.5 lbs.)
Metric Ton (Tons)	t (Tns.)	19.4 t (21.4 Tns.)
Hours (Hours)	h (hrs.)	7.4 h (7.4 hrs.)
Liter (Gallons)	L (gals.)	4725.33 L (1248.3 gals.)
Square millimeters (Square Inches)	mm^{2} (sq. in.)	$1290.32 \mathrm{~mm}^{2}$ (2 sq. In.)
Square meters (Square yards)	m^{2} (sq. Yds. or S.Y.)	$4.18 \mathrm{~m}^{2}$ (5 sq. Yds. or S.Y.)
Square kilometers (Square miles)	km^{2} (sq. mi.)	$15.54 \mathrm{~km}^{2}$ (6 sq. mi.)
Hectare (Acres)	ha (Ac.)	2.14 ha (3 Ac.)
Average (Average)	Avg. (Avg.)	--------
Cubic millimeters (Cubic inches)	mm^{3} (cu. in.)	$16387.06 \mathrm{~mm}^{3}$ (1 cu. in.)
Cubic meters (Cubic feet)	m^{3} (cu. Ft. or C.F.)	$0.226 \mathrm{~m}^{3}$ (8 cu. ft. or 8 C.F.)
Cubic meters (Cubic yards)	m^{3} (cu. yds. or C.Y.)	$165.14 \mathrm{~m}^{3}$ ($9 \mathrm{cu} . \mathrm{Yds}$. or C.Y.)

Term	Abbreviation	Example
Inches	in. or "	2 in . or 2 "
Feet	ft. or ${ }^{\prime}$	2 ft . or 2^{\prime}
Yards	yds.	5 yds .
Miles	mi.	10 mi .
Grams	g	3.48 g
Ounces	oz.	12.4 oz.
Pounds	Ibs.	173.5 lbs .
Tons	Tns	21.4 Tns
Gallons	gals.	1248.3 gals.
Hours	hrs.	7.4 hrs .

Liquid asphalt application rate $=$ Number of gallons used (in gallons per square yards) Area covered in square yards

Term	Abbreviation	Example
Square inches	sq. in.	2 sq . in.
Square feet	sq. ft. of S.F.	7 sq. ft. or 7 S. F.
Square yards	sq.yds. or S.Y.	5 sq. yds. or 5 S.Y.
Acres Cubic inches	Ac. cu. in.	3 Ac. 1 cu . in.
Cubic feet Cubic yards	cu. ft. or C.F. cu. yds. or C.Y.	8 cu. ft. or 8 C.F. 9 cu . yds. or 9 C.Y.

Multiply	$\underline{\text { Times }}$	To Find
Cubic Yards	46,656	
Cubic Yards	202.0	Cubic Inches
Grams	0.03527	
Ounces	28.35	Gallons
Ounces	0.0625	Gramses
Pounds	453.6	Pounds
Tons	2000	Grams
Pounds	0.0005	Pounds
Gallons	8.3	Tons
Gallons	0.1337	Pounds of Water
Gallons	231	Cubic Feet
Pounds of Water	0.1198	Cubic Inches
Miles per Hour	88	Gallons
Miles Per Hour	1.467	Feet Per Minute

Multiply	Times	To Find
Feet	12	Inches
Feet	0.3333	Yards
Miles	5280	Feet
Miles	1760	Yards
Square Feet	0.1111	Square Yards
Acre	43,560	Square Feet
Acre	4840	Square Yards
Square Miles	640	Acres
Square Yards	9	Square Feet
Cubic Feet	62.4	Pounds of Water
Cubic Feet	1728	Cubic Inches
Cubic Feet	0.03704	Cubic Yards
Cubic Feet	7.48	Gallons
Cubic Inches	.0005787	Cubic Feet
Cubic Inches	.00002143	Cubic Yard
Cubic Yards	27	Cubic Feet

```
Percent grade = }\begin{array}{l}{\mathrm{ Vertical rise or fall \ X 100}}\\{\mathrm{ Horizontal Distance }}
```

Percent moisture $=$ Wet weight - dry weight

$A=\frac{(2 r)^{2}-\pi r^{2}}{2}$

$A=\pi r^{2}$

$A=L W+\pi r^{2}$

$$
A=\pi(R r)
$$

VOLUME FORMULAS

