

Asphalt Research Update

Construction Academy October 1, 2025

Greg Sholar

- 5 million ESALs per
- Traffic for 2 years
- Now on 3rd cycle

NCAT Test Track

Cracking (% lane) After 23 Million ESALs

NCAT Test Track

Rutting (mm) After 23 Million ESALs

Asphalt Test Road

- **US 301 (SR 200) in Clay County.**
- Approximately 2.3 miles long.
- ■12 test sections, 1000 ft. long.

Asphalt Test Road

Southbound travel lanes:

Asphalt Test Road

Northbound travel lanes:

-Concrete Test Road

•Middle lanes:

Diversion Lanes

■Traffic started Sept. 26, 2024.

Asphalt Test Road – Base Sections

- •Milled all existing asphalt pavement.
- Excavated the existing base down to the stabilized subgrade.
- Reconstructed the base sections with various materials.

Asphalt Test Road – Base Sections

1 Control	2 Unstabilized RAP Base	3 CCPR RAP Base	4 Emulsion Stabilized RAP Base Mixed in Place	5 Limerock/ RAP Base (50/50)	6 Limerock/ RAP Base (75/25)	7 Full-Depth Reclamation
0.75" FC-5	0.75" FC-5	0.75" FC-5	0.75" FC-5	0.75" FC-5	0.75" FC-5	0.75" FC-5
2" Type SPM	2" Type SPM	2" Type SPM	2" Type SPM	2" Type SPM	2" Type SPM	2" Type SPM
4" Type SP	4" Type SP	4" Type SP	4" Type SP	4" Type SP	4" Type SP	4" Type SP
12" Limerock	12" Unstabilized 100% RAP Base	12" CCPR RAP Base	12" Emulsion Stabilized RAP Base	12" Limerock/ RAP Base (50/50)	12" Limerock/ RAP Base (75/25)	12" FDR (Mill 6.75")

Asphalt Test Road – Asphalt Sections

8A	8B	9	10A	10B	11	12
Reflective Cracking	Reflective Cracking (Control)	Superpave 5	Deep Lift (HP)	Deep Lift (76-22)	FC-5 Only (Control)	FC-7 Only
0.75" FC-5	0.75" FC-5	0.75" FC-5	0.75" FC-5	0.75" FC-5	1.0" FC-5	1.0" FC-7
1.75" Type SPM			1.5" Type SPH, HP Binder	1.5" Type SPM		Existing Asphalt
1.25" CRM Existing Asphalt	3.0" Type SPM Saw cut Existing Asphalt	cracks	6.0" Type SPH, HP Binder	6.0" Type SPM	Existing Asphalt	
Existing Base	Existing Base	Existing Base	Existing Base	Existing Base	Existing Base	Existing Base

FDOT Heavy Vehicle Simulator

FDOT Heavy Vehicle Simulator

- •Allows expedited evaluation.
- Previous process required a roadway test section and the application of six million vehicle passes.
- Results so far:
 - -Approved 20% RAP in limestone dense graded friction course.
 - -Approved Basalt, Gabbro, Quartzite, and Diorite as approved friction aggregates with up to 20% RAP.

Factor	Durability	Permeability	Drainability	Cracking Resistance	Rutting Resistance	Friction	Macrotexture
FC-5	0	0	0	0	0	0	Ο
HP	++	0	0	++	0	0	0
9.5 mm OGFC	+	0	0	0	0	0	0
Alternative FC	++	_	<u> </u>	+	+	+	_
SMA	++	<u> </u>		+	++	+	

- **Explored asphalt-based alternatives to standard High Friction Surface Treatment (epoxy with calcined bauxite aggregate).**
 - -Currently \$60/sy!!!

- Studied the addition of quartzite, slag, and calcined bauxite vs. control.
- •FC-4.75, FC-9.5, and FC-5.
- Used 3-wheel polisher and DFT.

Conclusion:

-"None of the mixes in this study produced results comparable to HFST."

Work performed by the University of Florida.

Benchmarked 15 mixtures at mix design and 15 mixtures at

production.

- Examined mixtures with different binder types, aggregate size, aggregate type, gyration level, and from eleven contractors.
- A large number of conclusions.

New Crack Relief Mixture (UF)

•Used for prevention of reflective cracking (bottom to top propagation). Not for top-down cracking.

New Crack Relief Mixture (UF)

- ■Placed on Asphalt Test Road (2024) and SMO track (2025).
- Layer thickness: 1.0 to 1.25" thick. (1.25" on Test Road).
- SP-9.5 coarse graded mix.
- ■PG 76-22 or HP binder. No RAP. (HP used on Test Road).
- **■**Ndesign = 50.
- **Air voids = 2.0%**
- ■VMA = 17% minimum. (VMA = volume of air + asphalt)
- ■Target density = 96.5 %Gmm.
- ■Minimum density = 93.0 %Gmm.

Evaluation of RAP in FC-5 and High Polymer Mixtures

- •Two separate projects to study the impact on mixture performance (especially cracking and raveling).
- ■15% RAP in FC-5 mixtures.
 - Received final report last week.
 - -Only detriment to adding RAP is reduced permeability due to RAP fineness.
 - --Implementation still to be discussed.
- ■20% RAP in High Polymer mixtures (in progress).

Evaluating Asphalt in Flooded Conditions (UF)

•Goal is to assure asphalt mix durability when submerged in water and at times trafficked.

Thank you. Comments/Questions?

Greg Sholar Asphalt Materials Engineer

gregory.sholar@dot.state.fl.us

Office: 352.955.2920

Cell: 352.317.6633